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Abstract: This paper investigates the impact of combined axial through flow and radial mass flux on
Taylor–Couette flow in a counter-rotating configuration, in which different branches of nontrivial
solutions appear via Hopf bifurcations. Using direct numerical simulation, we elucidate flow struc-
tures, dynamics, and bifurcation behavior in qualitative and quantitative detail as a function of axial
Reynolds numbers (Re) and radial mass flux (α) spanning a parameter space with a very rich variety
of solutions. We have determined nonlinear properties such as anharmonicity, asymmetry, flow rates
(axial and radial) and torque for toroidally closed Taylor vortices and helical spiral vortices. Small
to moderate radial flow α initially decreases the symmetry of the different flows, before for larger
values, α, the symmetry eventually increases, which appears to be congruent with the degree of
anharmonicity. Enhancement in the total torque with α are elucidated whereby the strength varies for
different flow structures, which allows for potential better selection and control. Further, depending
on control parameters, heteroclinic connections (and cycles) of oscillatory type in between unstable
and topological different flow structures are detected. The research results provide a theoretical basis
for simple modification the conventional Taylor flow reactor with a combination of additional mass
flux to enhance the mass transfer mechanism.

Keywords: Taylor–Couette reactor; computational fluid dynamics; bifurcation theory; mass transfer
mechanism; flow patterns; nonlinear dynamics

1. Introduction

Starting with the pioneering work of G. I. Taylor [1], the flow in the gap between
two concentric independently rotating cylinders, i.e., Taylor–Couette flow [2] has been the
subject of intense theoretical, numerical and experimental investigations. Understanding
of such a type of flow is both of scientific interest, i.e., the revealing of various hydro-
dynamic stabilities [1,2], and of practical interest for many engineering applications in
rotating machinery.

To date, the list of applications of Taylor flow in reactors and other devices is continu-
ously growing with developments in industrial production such as centrifugal extractors [3],
biological reactors [4], and filtration devices, just to name a few. Thereby, they cover a
wild field, spanning from an industrial point of view, with filtering suspension and water
purification via reverse osmosis [5–9] towards medical use for blood filtration [10–12].
Other examples to mention are the lubricating flow between rotating shafts in turbopumps,
in rocket engines, in multi-spool turbofan engines and in the bearing housing of low and
high bypass aircraft engines [13,14] and eventually nuclear main pump [15].

Over the years, numerous configurations have been used to enhance the heat and
mass transfer capacity of vortex flow within reactors. Several theoretical and mathematical
models were evaluated to test the flow and mass transfer characteristics of flow reactors
with respect to different operating parameters. Models were established first for pure
liquid [16,17] and later expanded to liquid solid reaction [18,19] to study the suspension
distribution characteristic of catalysts within the flow reactor as well as two phase flows.
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On the fundamental side, numerical studies of the Taylor–Couette flow in the ultimate
flow regime [20] unveiled that flow transitions are delayed in the wide gap, resulting from
the combined effects of the stabilizing curvature of the inner cylinder and the reduced
shear. Other works focused on improving the classical setup of the Taylor flow reactor
through structural changes. Numerous works studied modifications and changes in the
rotor shape or extra added internal baffles [21,22] as well as incorporating of annular fins
along the inner cylinder [23] which all in common detected a reduction in the smooth
critical Reynolds number. Further, changing the roughness of the cylinder wall in the
Taylor reactor allows to control the wavelength of the Taylor vortices [24].

The presence of a radial through-flow in the annulus between two differentially ro-
tating porous cylinders modifies the absolute stability of the Taylor vortex flow (TVF) as
investigated in various works [25–31]. All these works, whether experiments or numerical
simulations, come to the same conclusion: both converging radial flow and sufficiently
strong diverging flow have a stabilizing effect on the Taylor instability, while weak to
moderate diverging flow destabilizes the system [25,27,31]. Mainly focused on stability
behavior, to date, less attention has been given to internal modifications of the flow struc-
tures itself. A gap, which the current work closes by calculating symmetry and degree
of anharmonicity.

The present paper examines the combined effect of axial through flow and radial mass
flux (injection and suction through the cylinder walls) and the resulting interaction and
modifications in hydrodynamics. The key motivation for this work is the fact that typical
separation devices, such as rotating filtration [12], vortex flow reactors [32,33], oil-sand
separation in the petroleum industry [34] is using a radial mass flux to fulfill their duty.
However, in order to be efficient, these devices have to work continuously in order to
perform the separation, while the mixture enters at one side and the “clean” flow exits
at the other. Thus, an intrinsic axial flow is present at all times. A finite radial mass flux
not only enhances the total torque of all flow states, more importantly the enhancement
is different in strength depending on the flow structure. This allows for better potentially
selection and therefore provides a further possibility for control.

The problem formulation and numerical approach are presented in Section 2. Section 3
examines the bifurcation behavior and parameter space for Re and α. Then, the flow
dynamics of distinct flow states is analyzed, velocity profiles, anharmonicity, asymmetry
and torque are discussed, culminating with a conclusion in Section 4.

2. Materials and Methods
2.1. Governing Equations

Considering the flow driven in the annular gap between two independently rotat-
ing cylinders [1,2] (Figure 1), with the inner cylinder of radius Ri rotating at angular
speed ωi and the outer cylinder of radius Ro rotating at angular speed ωo. In the present
study, we consider in the axial direction periodic boundary conditions which are set to
λ/(Ro − Ri) = 1.6 (λ being the axial wavelength), corresponding to an axial wavenumber
k = (2π/λ) = 3.927. The fluid in the annulus is assumed to be Newtonian, isothermal, and
incompressible with kinematic viscosity ν.
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Figure 1. Schematics of the Taylor Vortex reactor illustrating a combination of radial and axial flow in
counter-rotating configuration including sketch of laminar velocity profile v(r, θ) (not to scale). The
radial flow can be directed outward (α > O) (illustrated), or inward (α < O). The axial imposed
mass flux Re is considered positive from bottom to top.

The non-dimensional Navier–Stokes equations governing the flow are

∂tu + (u · ∇)u = −∇p +∇2u, ∇ · u = 0, (1)

where u = (u, v, w) is the velocity in cylindrical coordinates (r, θ, z) and the corresponding
vorticity is ∇ × u = (ξ, η, ζ). The system is governed by the following independent
non-dimensional parameters:

Inner [Outer] Reynolds number: Rei[o] = ωi[o]Ri[o]d/ν, (2a)

Axial Reynolds number: Re = 〈wAPF(r)〉(see below), (2b)

Radial Reynolds number: α = uiRi/ν (= uoRo/ν, owing to continuity), (2c)

Radius ratio: b = Ri/Ro. (2d)

In this study, we assume a wide gap with a fixed radius ratio b = 0.5. The length
and time scales of the system are set by the gap width d = Ro − Ri and the diffusion
time d2/ν, respectively. The pressure in the fluid is normalized by ρν2/d2. Additionally,
the inner and outer Reynolds numbers (Equation (2a,2b)) are fixed to Rei = 120 and
Reo = −75 (corresponding ratio µ = Rei/Reo = −1.62), respectively, while varying
either the axial Reynolds number Re (Equation (7)) or the radial Reynolds number α
(Equation (2c)). Boundary conditions on the cylindrical surfaces are

u(ri, θ, z, t) = (ui, Rei, 0) (3a)

u(ro, θ, z, t) = (uo, Reo, 0) (3b)

(with uo = bui), respectively, where the non-dimensional inner and outer radii are ri = Ri/d
and ro = Ro/d.

The governing equations (Equation (1)) and the boundary conditions (Equation (3a,3b))
are invariant under arbitrary rotations Rα about the axis, arbitrary axial translation Zl and
with respect to time translations φt0 . The actions of these symmetries on the velocity
field are

Rα(u, v, w)(r, θ, z, t) = (u, v, w)(r, θ + α, z, t), (4a)

Zl(u, v, w)(r, θ, z, t) = (u, v, w)(r, θ, z + l, t), (4b)

φt0(u, v, w)(r, θ, z, t) = (u, v, w)(r, θ, z, t + t0). (4c)
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These idealizations lead to a unique basic state, i.e., Circular Couette flow (CCF) which
depends only on r. The system has SO(2)×O(2) symmetry, where SO(2) is the group
of arbitrary rotations about the axis and O(2) is the group containing the reflection at
any height z and translations in z direction. The mean, possibly zero, axial flux remains
unchanged along the radial direction. All symmetries (Equation (4a,4b,4c)) are conserved
with only the radial profiles of the CCF basic state depending on the parameter α.

It is worth mentioning that for finite axial through flow, Re 6= 0, the symmetry is
also invariant under change between the two degenerated spiral vortex flows (left- and
right-handed, L1-SPI and R1-SPI) together with inverting the axial flow direction Re:

L1-SPI(Re, α) = R1-SPI(−Re, α). (5)

2.2. External Axial through Flow Re

External axial through flow throughout the annulus is enforced by a constant pressure
gradient with size ∂z pAPF to the axial velocity component in the Navier–Stokes equations
(Equation (1)). In the sub-critical regime (below the onset of any vortex structure), this
pressure gradient forces an annular Poiseuille flow (APF) [35,36]. The radial profile of this
axial through flow velocity is given by

wAPF(r) =
∂z pAPF

4

[
r2 +

(1 + b) ln r
(1− b) ln b

+
(1 + b) ln(1− b)

(1− b) ln b
− 1

(1− b)2

]
. (6)

Its mean value can be used to define the axial through flow Reynolds number

Re := 〈wAPF(r)〉 = −
∂z pAPF

8
1− b2 + (1 + b2) ln b

(1− b)2 ln b
, (7)

which describes the externally applied additional axial pressure gradient. Therefore, a
positive [negative] Re indicates an upward [downward] axial through flow, wAPF(r), in the
positive [negative] z direction, respectively (see Figure 1). It means that an axial through
flow can be characterized by the axial Reynolds number Re, Equation (7).

2.3. Numerical Method

The Navier–Stokes Equation (1) are solved using a second-order time-splitting method
with consistent boundary conditions for the pressure [37,38]. Our code G1D3 [39] is a
combination of a finite-difference method in the radial and axial directions (r, z) and a
Fourier–Galerkin expansion in the azimuthal direction (θ) with time splitting resulting in
a decomposition

f (r, θ, z, t) = ∑
m

fm(r, z, t) eimθ (8)

of all fields f ∈ {u, v, w, p}. For the parameter regime considered, the choice mmax = 10
(with m being the azimuthal wavenumber) provides adequate accuracy. We use a uniform
grid with spacing ∆r = ∆z = 0.02 and time steps ∆t < 1/3800.

The system of coupled equations for the amplitudes fm(r, z, t) of the azimuthal normal
modes is solved with the FTCS algorithm. The method of ‘artificial compressibility’ [40]
has been used to adjust pressure and velocity fields iteratively to each other.

dp(n) = −γ∇ · u(n) (γ ∈ (0, 1)) (9a)

p(n+1) = p(n) + dp(n), (9b)

u(n+1) = u(n) − ∆t∇(dp(n)). (9c)

The velocity field u(n+1) is adapted by the pressure correction dp(n) in the nth iteration
step being proportional to the divergence of u(n). The iteration loop (Equation (9)) is
executed for each azimuthal Fourier mode separately. The iteration stops when ∇ · u
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has become sufficiently small for each m mode considered. The magnitude of the total
divergence never exceeded 0.02 and typically it was much smaller. After that, the next
FTCS time step was executed.

For code validation, SPI solutions have been compared with experiments [41,42] and
previous numerical simulations and close to the onset with Ginzburg-Landau results [43,44].
In addition, the non-linear primary bifurcating solutions (TVF and SPI) were compared
with the respective stability boundaries of the linearized NSE obtained by a shooting
method [44,45]. The bifurcation thresholds for both primary vortex structures in TCS were
found to lie about 0.5% below the respective linear stability thresholds, whereby the mesh
size has been continuously reduced towards finer discretizations until no further variation
in the results and thus deviation from the linear thresholds could be detected. Further
investigation of the nonlinear solutions change when varying mmax and/or the grid spacing
revealed that typical SPI frequencies have an error of less than about 0.2%. Time steps
were always well below the von Neumann stability criterion and by more than a factor of 3
below the Courant–Friederichs–Lewy criterion.

For diagnostic purposes, we also evaluate the complex mode amplitudes fm,n(r, t)
obtained from a Fourier decomposition in the axial direction.

fm(r, z, t) = ∑
n

fm,n(r, t) einkz. (10)

2.4. Parameters Setting and Quantities

Motivated by operating conditions of reactors and to ensure avoidance of turbulence
transitions, we explore the parameter space within Re ∈ [−20, 20] and α ∈ [−20, 20]. That is,
for the fixed inner and outer Reynolds numbers (Rei = 120 or Re0 = −75), the effects of the
axial and radial through flow on the dynamics of various flow states will be investigated.

As a global measure for characterizing the flow state, we use the modal kinetic energy,
Ekin, defined by

Ekin = ∑
m

Em =
1
2

∫ 2π

0

∫ Γ/2

−Γ/2

∫ ro

ri

umu∗mrdrdzdθ, (11)

where um (u∗m) is the m-th (complex conjugate) Fourier mode, Equation (8), of the velocity
field, respectively. Thus, for the axisymmetric solutions (m = 0), e.g., CCF and TVF, only E0
is non-zero. We note that Ekin is constant (non-constant) for a steady (an unsteady) solution.
For a diagnostic purpose, we consider the time-averaged quantity (over one period T)
Ekin =

∫ T
0 Ekindt and the time-averaged mode amplitudes |um,n|. Note that when time-

averaged quantities are studied, a period time of a particular solution has been considered.
The period time of a solution depends on the parameters of a system, which are typically
different for different flow structures. In addition, as a local measure to characterize the
flow states, the azimuthal vorticity on the inner cylinder at symmetrically displaced two
points on the mid-plane, η± = (ri, 0,±Γ/4, t), will be considered.

2.5. Nomenclature

The present study focuses on flow dynamics in a relatively short periodic domain
with axial wavelength λ = 1.6 and counter-rotating cylinders. A common feature shared
by most flows in the counter-rotating case, also in the absence of any radial flow is that they
are non-axisymmetric. Typically m = ±1 for certain parameter regime. Usually these states
correspond to helical spiral vortex flow (spiral, SPI). However, in the present study most
states have a dominant m = 0 mode and appear with toroidally closed vortex structure.
These are [modulated] wavy vortices [m]wTVF and [modulated] ribbon [m]RIB solutions,
which the latter being superposition of SPIs with opposite chirality (although helical modes
m = ±1 are dominant). Table 1 provides an overview of the various flows discussed in this
work. Nomenclature, including main characteristics, dominant modes, and corresponding
flow dynamics are indicated.
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Table 1. Flow state nomenclature and abbreviations. From left to right: Abbreviation, flow state,
dominant Fourier modes, and dynamics.

Abbreviation Flow State Modes m Dynamics(Dominant)

CCF Circular Couette flow 0 −
TVF Taylor vortex flow 0 −

1-[m]wTVF [modulated] 0± 1 rotating
wavy Taylor vortex flow

1-[m]wTVFt time-dependent [modulated] 0± 1 rotating
wavy Taylor vortex flow

L[R]1-SPI left- [right-] winding 1[−1] left-[right-]winding,
rotating

spiral vortex flow
1-RIB ribbon ±1 rotating

1-RIBA↔B alternating ribbon ±1 ±1 alternating A↔ B, rotating

3. Results and Discussion
3.1. Variation with Axial Flow Re
Absence of Radial Flow (α = 0)

Before considering any combination of axial and radial flow, we look at the situation
with only axial through flow for the given set of parameters. Figure 2 shows how the
through-flow influences the different solutions, TVF (blue circles), L1-SPI (orange up-
triangles), R1-SPI (red down-triangles) at the fixed characteristic driving combination
Rei = 120 and Reo = −75 (α = 0). Shown are variation with Re of the kinetic energy
Ekin and the radial flow intensity at mid-gap (|um,n| = |u1,1| for L1-SPI, |u1,−1| for R1-
SPI, and |u0,1| for TVF). For this parameter combination, the three flow structures coexist
stably when Re = 0. Further TVF is stable over the whole parameter range [−20; 20]. For
Re = 0 the two spirals, L1-SPI and R1-SPI, are mirror images of each other and their radial
velocities are the same and all respective axial velocities have the same magnitude but
opposite direction (i.e., |u1,1| = |u1,−1|).

A finite through-flow Re 6= 0 breaks the mirror symmetry between the L1-SPI and
the R1-SPI and the radial flow amplitudes evolve with Re as shown in Figure 2. While
for small through-flow, for −9.2 6 Re 6 9.2 the two SPIs coexist bistable (particular
realization depending on initial conditions) with increasing Re one SPI becomes unstable.
This through-flow enforced loss of stability appears when the phase velocity changes sign
and reverts the originally adverse axial phase propagation of the corresponding SPI. Losing
the stability, the through-flow preferably induces a transition to the stable TVF statem
rather than to the remaining stable SPI state. Thus, when the through-flow destabilizes, e.g.,
L1-SPI, then typically the |u0,1|mode of TVF grow rather than the |u1,−1|mode of R1-SPI.

Increasing Re initially slightly decreases Ekin for both TVF and L1-SPI, while Ekin
strongly increases for larger Re.
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Figure 2. Influence of an external through-flow Re in absence of radial flow (α = 0) on different
vortex structures. Shown are top modal kinetic energy Ekin and bottom primary Fourier amplitudes of
the radial flow field at midgap r = 0.5 for L1-SPI (u1,1), R1-SPI (u1,1), and the TVF (u0,1). The dashed
lines and letters (a–e) on top of the panel indicate the Re number at which bifurcation scenarios with
variation in α are plotted in Figure 3. Vertical arrows indicate transitions after loss of stability, see text
for details.

3.2. Bifurcation Behavior with Radial Flow α

Figure 3 illustrates the branches of TVF (blue circles), L1-SPI (orange up-triangles), R1-
SPI (red down-triangles) and different wTVF[t] (black [brown] squares) for four different
values of axial through flow Re (indicated by the arrow in the phase diagram in Figure 2)
with variation in radial flow α. Shown here are the same quantities (modal kinetic energy
Ekin and the dominant radial flow field amplitudes |um,n|) as in Figure 2. Note that for
time-dependent solutions the quantities are averaged over one period.

Starting with Re = 0 (Figure 3a) and increasing α the Circular Couette flow (CCF)
basic state is succeeded by the symmetry degenerated spiral flow (L1-SPI & R1-SPI) that
appears at α ≈ −1.65 via a primary Hopf bifurcation with a common, finite frequency
out of CCF, as a consequence of the breaking of the O(2) symmetry (here in the axial
direction). L1-SPI & R1-SPI coexist with increasing α before losing stability at α ≈ 8.72
and transition (indicated by the vertical arrows in Figure 2) towards a time-dependent
wavy vortex flow 1-wTVFt. On the other hand, TVF that appears (later than SPI) via a
circle pitchfork bifurcation out of CCF is unstable close to onset, but eventually becomes
stabilized at α ≈ −1.1. With increasing α, TVF coexists stable with L1-SPI and R1-SPI,
before losing its stability at α ≈ 7.25, when the helical modes (1, 1) = (1,−1) become
finite to form a wavy Taylor vortex flow, 1-wTVF. For α ≈ 7.25 another incommensurable
frequency appears resulting in the time-dependent state 1-wTVFt (i.e., the same solution
to which SPI transitions to). Further, increasing α the helical mode (0, 1) disappears at
α ≈ 10.6 leaving a ribbon solution (RIB) as a superposition of L1-SPI and R1-SPI with equal
mode amplitudes. Eventually, RIB destabilizes at α ≈ 13.5 leaving a heteroclinic cycle
(hc), 1-RIBA↔B with alternation between two symmetry related 1-RIBA and 1-RIBB [31].
1-RIBA↔B disappears for α ≈ 14.3 and the system goes back to the CCF basic state.
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Figure 3. Bifurcation diagrams for various vortex structures versus α for (a) Re = 0, (b) Re = 5,
(c) Re = 10, and (d) Re = 20. Shown are top (time-averaged) modal kinetic energy Ekin (Equation (11))
and bottom the dominant (time-averaged) radial flow field amplitudes |um,n| at mid-gap con-
tributed from the modes (m, n) as indicated. Vertical arrows indicate the transition when one
flow becomes unstable.

With a small axial through flow Re = 5 (Figure 3b) present, the Z2 symmetry is broken
and thus L1-SPI and R1-SPI are not degenerated anymore. R1-SPI, which is naturally
propagating against the through flow Re, only exists in a certain range −0.6 . α . 4.6.
With decreasing α it loses stability against L1-SPI, which is naturally propagating in the
same direction as the external applied through flow Re and with increasing α it loses
stability against TVF. In addition, the former described 1-wTVF becomes modified and
more complex as the helical modes (1, 1) and (1,−1) are not identical anymore generating
a modulated wavy flow 1-mwTVF. Aside this flow structure modification, the general
bifurcation behavior with α remains very similar to the case for Re = 0. The main difference
is the fact that only L1-SPI bifurcates stably out of CCF (here at α ≈ −1.7), while R1-SPI
only becomes stabilized at larger α ≈ −0.6. Further, 1-mwTVFt exists stably for a wider
range before eventually disappearing at α ≈ 14.9 and leaving only the CCF basic state
behind. Thus, here no 1-RIB or 1-RIBA↔B are present.

At larger Re = 10 (Figure 3c), the bifurcation behavior remains qualitative the same
as observed for Re = 5 but with two main differences. First, no stable R1-SPI appears
and, second, 1-mwTVF does not direct change into 1-mwTVFt with increasing α. Instead,
a new region with a heteroclinic connection between the topological different solutions,
the helical orientated 1-mwSPI and the toroidally closed 1-wTVF, is found. In this region
(9.7 . α . 11.6) the system changes, alternating between these two flow states This scenario
will be discussed in more detail in Section 3.5. For large α ≈ 14.95, 1-mwTVFt disappears
and leaving only the CCF basic state behind.

For larger Re = 20 (Figure 3d) the heteroclinic connection between 1-mwSPI and
1-mwTVF remains present and in fact appears over a wider range in 10.5 . α . 13.5. In
contrast to the former scenario at lower Re, with increasing α, the time dependent solution
1-mwTVFt looses its time dependence again at α ≈ 14.6 and by doing so, going back
to 1-mwTVF state, which then finally disappears into the CCF basic state at α ≈ 15.45.
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On the other side for inward directed flow α < 0, TVF also becomes unstable against
1-mwTVF at α ≈ −0.15 similar as it does with increasing α at α ≈ 7.3. At smaller α ≈ −0.65
1-mwTVF becomes unstable and transitions into the only remaining L1-SPI, as seen for
TVF for other Re.

3.3. (Re, α) Parameter Space

Figure 4 illustrates the (Re, α) parameter space investigated and provides an overview
of all the solutions existing for here studied control parameters. A small arrow below the
abscissa indicate those Re for which the bifurcation diagrams in Figure 3 were obtained.
It is worth mentioning that Figure 4 only shows positive axial through flow Re > 0; due
to symmetry relations (Equation (5)) the phase diagram for negative axial through-flow
Re 6 0 looks the same with exchange of L1-[mw]SPI and R1-[mw]SPI, respectively.
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Figure 4. (α, Re) parameter space illustrating various solutions as indicated in Table 2. The small
vertical arrows below the abscissa (a–d) highlight the parameter range of which the bifurcation
diagrams are presented in Figure 3, while the dotted horizontal line at α = 0 corresponds to Figure 2.
To guide the eyes some boundaries are color coded; e.g. within the red line stable R1-SPI exist, while
between the orange lines stable L1-SPI exist. See text for further explanation.

Table 2. Various regions, labeled A-I, as presented in the (Re, α) parameter space diagram in Figure 4
including their properties: stable (s), unstable or non-existent (-), heteroclinic cycle (hc), heteroclinic
connection (hco). Note that the corresponding modulated flow states [·] indicated by “m” are present
when Re 6= 0 instead of their non-modulated mother state.

Solution Region

A B C1 C2 C3 C4 C5 D E F G H I

TVF - - - - - - - s s - - - -
1-wTVF [1-mwTVF] - - s s s s s - - - - - -

1-wTVFt [1-mwTVFt] - - - - - - - - - - s - -
L1-SPI s s s s s - - s s - - - -
R1-SPI - s - - s - - - s - - - -

1-RIB, 1mRIB - - - - - - - - - - - s -
1-RIBA↔B [1-mRIBA↔B] - - - - - - - - - - - - hc

1-mwTVF↔1-mwSPI - - - - - - - - - hco - - -

The different curves illustrate the stability thresholds separated in the various regions,
labeled A-I, of various flow structures, as listed in Table 2 including their stability properties
(stable (s), unstable or non-existing (-) heteroclinic cycle (hc), heteroclinic connection (hco)).
To guide the eyes some boundaries are color coded; e.g. within the red line stable R1-
SPI exist (including regions B,E,C3), while between the orange lines stable L1-SPI exist
(including regions A,B,C1,C2,C3,D,E).
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Of special interest are the two regions in which heteroclinic cycles and connections
were detected. Region I with 1-RIBA↔B [1-mRIBA↔B] has been detailed studied in a
previous work [31]. Region F, instead, shows a new heteroclinic connection between two
topological different flow states, 1-mwTVF↔1-mwSPI, which will be presented in more
detail later in Section 3.5.

3.4. Flow Dynamics, Structures and Heteroclinic Connections

Next we have a closer look into the flow dynamics with variation in Re and α. Thereby,
we restrict our studies mainly to the ‘pure’ solutions of TVF, L1-SPI and R1-SPI. The
dynamics for the higher order solutions as presented in Figures 3 and 4 is way more
complex and beyond the scope of the present work. In the following, we consider different
quantities as anharmonicity, asymmetry and flow rates to characterize the dynamics [46,47],
similarities and differences between the flow states. The schematics in Figure 5 shows the
position for different of these quantities on the example of a L1-SPI.

∆
IN

∆
OUT

r
i

r
o

(4)

λ
L1−SPI

(3)(2)(1)

Figure 5. Schematics illustrating the main flow positions exemplarily shown on a L1-SPI (Re = 0,
α = 0): (1) inflow; (2) outflow; (3) vortex core; (4) mid-gap; ∆IN[OUT] regime of inflow [outflow]
(r = 0.5); ri[o]: inner [outer] cylinder radius.

3.4.1. Anharmonicity

It is well-known and easy to imagine, that, in general, helical flow states, as SPIs, have
crucial different nonlinear properties compared to the toroidal closed TVF. For instance, SPIs
have a non-vanishing axial flow rate and are characterized by highly nonlinear properties
such as asymmetry, which can be characterized by the following asymmetry parameter [46]

P =

∫ λ/2
−λ/2 |u(z)− u(−z)|dz∫ λ/2
−λ/2 |u(z) + u(−z)|dz

, (12)

with λ being the axial pattern wavelength. Figure 6 shows the axial profiles of the radial ve-
locity u(z) at the midgap position together with the asymmetry parameter P (Equation (12))
for TVF, L1-SPI, and R1-SPI at different Re and α as indicated. In the absence of axial through
flow Re = 0, TVF is fully symmetric and thus P is identical to zero for any radial flow α
(Figure 6(1c)).

However, a finite axial flow Re 6= 0 destroys the symmetry in u(z) of TVF and thus
P > 0. A positive radial outward directed flow α > 0 has the tendency to increase the sym-
metry of TVF, which has been destroyed by finite Re. Consequently, P decreases with larger
α. This effect is observed for any Re as it becomes stronger with increasing Re (Figure 6(2d)).
For all, here studied Re, one observes a small increase in P for small/moderate α ≈ 2 before
decreasing with larger α (Figure 6c).

In contrast to TVF, the helical SPIs are already asymmetric for Re = 0 (in Figure 6(1b)
only L1-SPIs are presented, as R1-SPIs have identical properties for Re = 0). Either inward
directed radial flow α < 0 as well as a moderate outward radial flow α > 0 increases the
asymmetry P of L1-SPI. Only for sufficiently strong α & 6 the asymmetry parameter P
decreases (Figure 6c) and L1-SPI becomes more symmetric again. This is a similar effect as
seen for TVF and can be explained by the fact that with larger α the flow structures (e.g.,
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velocity profiles) are pushed towards the outer cylinder. As a result, there is less space
in radial direction to allow for different (re-)circulation in the bulk. Qualitatively, R1-SPI
(here only stable existing for Re = 5 with α ∈ [0, 4]) illustrates the same behavior, whereby
the magnitude and range of the velocity profiles u(z) are smaller compared with L1-SPI.
This can be explained by the direction of Re, which is opposite directed to the natural
propagating direction of R1-SPI. Thus, R1-SPI is fighting against the wind of Re resulting in
only a small stable range in α (see also Figure 2).
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Figure 6. Flow dynamics for (1) Re = 0, (2) Re = 5, (3) Re = 10, and (4) Re = 20. Shown are axial
profiles of the radial velocity u(z) at the midgap position for (a) TVF and (b) L1-SPI & R1-SPI and
asymmetry parameter (c) P (see Equation (12)). In each case, the maximal radial outflow is chosen to
lie at z = 0.5λ. The L1-SPI [R1-SPI] is propagating in positive [negative] z direction (see also Figure 3).

Another possibility to quantify the degree of anharmonicity δ = ∆IN/∆OUT of the
vortex flow is to use the ratio ∆IN/∆OUT (see also Figure 5) between inflow and outflow
regions in the gap [47]. Figure 7 illustrates the variation in width for ∆IN and ∆OUT as well
the ratio δ for the same parameters shown in Figure 6. The velocity contour profiles shown
in Figure 8 confirm the outward move of the dominant flow structure towards the outer
cylinder with increasing α.

For any Re, the degree of anharmonicity δ decreases with increasing α (see also velocity
profiles in Figure 6). While for TVF, mainly δ > 1 (except Re = 20 & α = 7), i.e., the inflow
region is larger than the outflow region, for L1-SPI one detects δ < 1 for sufficiently strong
radial flow α, depending on Re. This is a direct effect of larger α that forces this increase in
∆OUT . For Re = 5 (Figure 7b) R1-SPI loses stability at α ≈ 6 when δ ≈ 1 and transitions to
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TVF. All in common, the values of δ for the L1-SPI (and R1-SPI) remain lower than those
for TVF.
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Figure 7. Degree of anharmonicity δ = ∆IN
∆OUT

(see Figure 5) for various vortex structures versus α for
(a) Re = 0, (b) Re = 5, (c) Re = 10, and (d) Re = 20.
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Figure 8. Azimuthal velocity contour profiles v = 0 in bulk gap (1 6 r 6 2) with variation of α as
indicated for different flow states at (a) Re = 0, (b) Re = 5, (c) Re = 10, and (d) Re = 20 (see also
Figure 6. Note that the vertical gray lines at r = 1.5 indicates the mid-gap of the bulk. For better
visibility two axial periods of the vortex profiles are shown.
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3.4.2. Axial Mean Flow

As seen in Figure 2 L1-SPI [R1-SPI] reverts its propagation direction at Re ≈ [−]9.6.
This is a result of the through-flow enforced reversal of the phase velocity that destabilizes
the SPI that propagates at small Re in the opposite direction, i.e., against the wind of the
external applied through-flow Re.

Figure 9 shows how the radial profiles of the mean axial flow,

w0(r) =
1

2π

∫ 2π

0
w(r, θ, z, t)dθ, (13)

of the different flow structures depend on Re and α. In the absence of axial through flow
(Re = 0) the mean axial flow for TVF is virtually unaffected by variation in α, it remains
zero. In contrast, variation in α affects both mirror symmetric states of L1-SPI and R1-SPI
in two ways. Increasing α results first in shifting the extreme of w0(r) into the center
of the bulk towards the outer cylinder. Second, it enforces the absolute maxim of w0(r)
(Figure 9a). For any finite axial through flow Re 6= 0, the mean profiles w0(r, Re 6= 0) of
TVF are modified qualitatively in a similar way. Increasing α decreases the maximum
values while, at the same time, the position of the extreme is moved outwards towards the
outer cylinder.
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Figure 9. Radial profiles of the axial mean flow w0(r) (Equation (13)) of TVF, L1-SPI, and R1-SPI (see
also Figure 6) for (a) Re = 0, (b) Re = 5, (c) Re = 10, and (d) Re = 20 at α as indicated. The thick
line refers to α = 0. Note the change in amplitude of w0(r) (ordinate scaling) for larger Re. In (a) at
Re = 0 the w0(r) = 0 for TVF and therefore not shown.

Similar also the extreme of the profiles for L1-SPI (natural propagating into the direc-
tion of the external Through-flow Re) are moved radial outwards with larger α, whereby
the maximum values mainly increase (in contrast to TVF) and only large radial flow α = 8
become stagnated Figure 9b) or eventually slightly decrease (Figure 9c,d). It is remarkable
that for larger Re and with increasing α the profiles w0(r, Re 6= 0) of the helical state L1-SPI
become more and more similar to the profiles w0(r, Re 6= 0) of TVF. Main difference is the
fact that the extreme are located at different radial positions, closer to the inner cylinder for
L1-SPI and closer to the outer cylinder for TVF. This observation is also in agreement with
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the former described decrease in the asymmetry parameter P (Equation (12)) for L1-SPI at
large values Re and α (Figure 6c), i.e., the flow becomes more symmetric again.

For the R1-SPI (Figure 9b) naturally propagating in the opposite direction as the
external through-flow at Re = 0, the maximal mean flow w0(r) is also moved radial towards
the outer cylinder. Thereby, the extremes of R1-SPI are always much further outside than
the corresponding one of L1-SPI. Moreover, the maximum values monotonically decrease
with larger α similar to TVF.

3.5. Unstable States

As seen in the bifurcation diagrams in Figure 3 for some parameters the system
is indefinite illustrating heteroclinic cycles, i.e., an alternating switch, between unstable
solutions of [mw]SPI and [mw]TVF, respectively. Such cycles have been detected before for
alternating transition between different ribbon solutions [31].

Exemplary Figure 10 shows time series visualizating the periodic change (switch)
between L1-SPI and 1-wTVF at Re = 10, α = 10. Illustrated are global modal kinetic energy
Ekin, dominant mode amplitudes |um,n| together with local measures of the azimuthal
vorticity η±. There is a fixed alternating/period time, τa, that only changes with modi-
fication in external parameters, e.g., α or Re. The larger α (Re fixed) the shorter the time
becomes that the flow remains in the unstable L1-SPI, before eventually transitioning into
1-mwTVFt at sufficiently strong α. Both time series of Ekin and in particular η± suggest the
heteroclinic cycle to be of an oscillatory type. Therefore, the oscillation amplitude in Ekin
(and η±) changes within a single period. Initially being relatively small in L1-SPI it grows
monotonically until being the largest when 1-mwTVF is present.
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Figure 10. Time series of (a) kinetic energy Ekin, (b) mode amplitudes |um,n| of the dominant axial
Fourier amplitudes of the azimuthal modes um(z, t) (Equation (8)) of the radial flow at midgap, and
(c) η± illustrating the alternating transition scenario between the two unstable solutions 1-mwTVF
and L1-wSPI, respectively. Control parameters Re = 10, α = 10.

The main dynamics during the transition from L1-SPI toward 1-mwTVF (Figure 11)
can be described as breakup and reconnection process of vortex pairs in the axial direction
(see also Figure 12). First, the vortex pairs of L1-SPI start to meander and relocate in
its axial position (direction), while moving closer together, which results in stretch and
compression in the annulus. With increasing time, this oscillation and compression increase
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with the result that two vortex pairs of different levels connect and eventually breakup.
Finally, the sections of the broken vortex pairs re-connect at the same level, forming the
toroidally closed vortex structure 1-mwTVF. This process repeats as long as no other
external parameters, e.g., α or Re are changed. Heteroclinic connections between different
solutions are not uncommon and has been studied in various systems [48–52] in the past.
As clearly visible in Figure 10, the modal kinetic energy Ekin shows two peak maxim during
one period. The first at the formation of 1-mwTVF (Figure 12 between (3)–(4)) and the
second at the elimination of 1-mwTVF, respectively. Both energy maxima appear at the
points of breakup in the vortex structures. First, when the helical vortex structure breaks up
(L1-SPI to 1-mwTVF) and second when the toroidal vortex structure breaks up (1-mwTVF
to L1-SPI). As expected, at these points, the variations in η± are also the largest.

The phase portrait (Figure 11b) spanned by η+, and η− illustrates the oscillatory type
of connections. For better visibility the same color code is used in Figure 11a,b. Although
L1-SPI is classical a limit cycle (periodic, 1-torus), due to the oscillatory type of connection
it appears as quasi-periodic (2-torus) solution. This is the best visible in the corresponding
Poincaré section (η−, Ekin), where a more or less closed circle can be detected for L1-SPI. In
principle, the same also holds for 1-mwTVF; however, as τa is quite short, and considering
the phase trajectory explores a wider range in space, only a few points appear. The Poincaré
section (η−, Ekin) shows a cone-like structure indicating that the system is (oscillatory)
approaching L1-SPI for most of the time.
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Figure 11. (a) Extraction of Figure 10 illustrating one single period of the heteroclinic connection (hco).
(b) Phase portrait in (η+, η−) plane (see text for further description). Exemplarily, orange and violet
colors indicate the L1-SPI and 1-mwTVF, respectively, extracted from longtime sequence (brown
color) of the flow dynamics (same color code is used in (a,b)). The inset shows the corresponding
Poincaré section (η−, Ekin) for η+ = −2000 (vertical green line in (b)). The dashed green lines with
labels (A)–(E) illustrate time steps for which flow visualizations are shown in Figure 12. Control
parameters: Re = 10, α = 10.
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Figure 12. Flow visualization of various flow pattern appearing within the transition scenario
between the two unstable solutions 1-mwTVF and L1-wSPI, respectively. Snapshots (1)–(5) for times
indicated (A)–(E) in Figure 11a. Shown are (a) isosurfaces of η [red (dark gray) and yellow (light gray)
colors correspond to positive and negative values, respectively.] (b) the radial velocity u(θ, z) on an
unrolled cylindrical surface in the annulus at mid-gap [red (yellow) color indicates in (out) flow with
zero specified as white], (b,c) vector plot [u(r, z), w(r, z)] of the radial and axial velocity components
(including the color-coded azimuthal velocity v. The thick contour lines in (c) correspond to v = 0.

Further visualization of the distinctive flow structures appearing during the hetero-
clinic connection are presented in Figure 12 (times indicated (A)–(E) in Figure 11a). Both
the vorticity η (1) and the radial velocity u(θ, z) (2) highlights the dominant contributions.
The helical left-winding shape with dominant m = 1 mode can be observed for L1-mwSPI
(Figure 12(1)) as well as the toroidally closed structure with dominant m = 0 mode for
1-mwTVF (Figure 12(4, 5)). Starting with only minor modulated L1-mwSPI (1) (no pure
L1-SPI due to always present and finite higher stimulated azimuthal modes m) the wavy-
like modulation increases (2)–(3) before the helical orientated vortex tubes eventually break
up and reconnect on the same level to form the toroidally closed structure of 1-mwTVF.

To further characterize the modification due to interaction of radial and axial flow,
we examine the behavior of the angular momentum and torque within the heteroclinic
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connection. Figure 13a shows the mean (axially and azimuthally averaged) angular mo-
mentum L(r) = r〈v(r)〉θ,z/Rei, as a function of the radius r for the same instances of time
as indicated (A)–(E) in Figure 11a). All curves show one main characteristic. In general,
the angular momentum curves follow a monotonically varying trend. The profiles in-
dicate typical behavior in that positive angular momentum decreases outward from the
rotating inner cylinder to the counter-rotating outer cylinder. The angular momentum
decreases with almost constant slope from the inner to the outer cylinder while showing a
pronounced plateau-like shape in the bulk center region. Virtually all the differences are
minor and the curves fall on top of each other, except for (D) when the flow appears to be
in the unstable 1-mwTVF. Here, L is larger in general, and in particular in the center region.
Figure 13b shows the corresponding variation of the dimensionless torque G = νJw within
the annulus. In calculating the torque, we used the fact that for a flow between infinite
cylinders, the transverse current of the azimuthal motion, Jω = r3[〈uω〉A,t − ν〈∂rω〉A,t]
(with 〈...〉A ≡

∫ rdθdz
2πrl ), is a conserved quantity [53]. As seen for L(r), the different curves

almost fall on top of each other, with the same exception for (D). Other than the angular
momentum, the profiles of G(r) do not show a monotonically varying trend. G(r) increases
near the inner cylinder, hereafter decreasing within the bulk to reach a minimum at about
0.6d before finally strongly increasing towards the outer cylinder. More important evidence
for the different dynamics can be seen in the total torque Gtotal (inset in Figure 13b), which
is monotonically increasing except at (D) when the flow structure of 1-mwTVF is present.
This obvious difference in Gtotal illustrates the differences in mass flow within the two
topological different flow states, L1-mwSPI and 1-mwTVF, respectively.
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Figure 13. Variation in (a) the angular momentum L(r) = r〈v(r)〉θ,z/Rei and (b) the dimensionless
torque G = νJω (see text for details) versus the radius r for solutions during the transition (indicated
(A)–(E) in Figure 11(a). The insets in (a) show a close up of L(r) and in (b) shows the total torque Gtotal .

Torque Variation with α

As seen before, the total torque Gtotal undergoes strong changes within the heteroclinic
connection, while changing between L1-mwSPI and 1-mwTVF. Figure 14 shows the de-
pendence of Gtotal with variation in α for different selected Re for the different main flow
structures L1-SPI, R1-SPI and TVF.
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Figure 14. Dependence of the total torque Gtotal with variation of α for different flow states at
(a) Re = 0, (b) Re = 5, (c) Re = 10, and (d) Re = 20 (cf. Figure 3).

Common features for all flow structures (L1-SPI, R1-SPI, and TVF) at any Re is the
monotonically increasing Gtotal with increasing α. In the absence and only moderate Re,
the total torque Gtotal for the helical state L1-SPI is always larger than for its corresponding
toroidal closed cousin state TVF. Moreover, in absence (Re = 0) and for small axial flow
(Re = 5), the total torque, Gtotal, for the L1-SPI, is always larger than for 1-mwTVF. L1-SPI
and R1-SPI differ due to the fact that one is blowing with the additional external applied
Re, while for the other Re appears as headwind against which the flow structure is fighting
against. The latter is the main reason for the narrow stable existence region of R1-SPI.
However, at moderate Re = 10, the curves for L1-SPI and 1-mwTVF basically fall together,
before at larger numbers Re the situation becomes just inverted. Here the total torque Gtotal
of TVF is always larger than the one of its counterpart 1-mwTVF. For inward directed radial
flow α < 0 the total torque shows first a stronger decrease, and second that Gtotal is virtual
indistinguishable between both flows.

4. Conclusions

In this paper, we have numerically investigated the combined effect of an externally
imposed axial mass flux (axial pressure gradient, axial through flow Re) together with a
radial muss flux (α) in a wide gap Taylor–Couette flow with counter-rotating cylinders.
This results in a more detailed picture of the effect of additional, combined imposed mass
flux and its interaction on various solutions with modification of their spatio-temporal
properties. The main results can be summarized as follows.

(1) The (Re, α) parameter space (Figure 4) illustrates a very rich variety of flow structures.
(2) For any finite axial through flow Re 6= 0 an increase in α initial decreases the symmetry

before it eventually increases the symmetry of the flow states, TVF and SPI (Figure 6).
Similarly, the degree of anharmonicity δ = ∆IN

∆OUT
decreases with increasing α for all

(pure) states (Figure 7). Interestingly, with increasing α, the axial mean flow for helical
SPI, natural propagating in the direction of the applied external axial flow Re becomes
closer to the profile of toroidal TVF (Figure 9).

(3) Depending on various system parameters, heteroclinic connections between two topo-
logical different unstable solutions (1-mwTVF↔1-mwSPI) are found. The connection
between these states appears to be of oscillatory type.
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(4) Combination Re and α can result in significant enhancement in torque Gtotal for
different flow states, allowing for better selection between them (Figure 14).

The results presented in this study regarding spatio-temporal properties of velocity
and vorticity fields of various flow states may open new perspectives in the study of
transport properties of counter-rotating Taylor–Couette flow.
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