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This paper investigates the impact of radial mass flux on Taylor-Couette flow in counter-
rotating configuration, in which a Hopf bifurcation gives rise to branches of nontrivial
solutions. Using direct numerical simulation we elucidate structures, dynamics, stability,
and bifurcation behavior in qualitative and quantitative detail as a function of inner
Reynolds numbers (Rei) and radial mass flux (α) spanning a parameter space with a rich va-
riety of solutions. Both radial inflow and strong radial outflow stabilize the system, whereas
weak radial outflow has a strong destabilizing effect. We detected the existence of stable
ribbons and mixed ribbons with low azimuthal wave number without symmetry restriction.
In addition, ribbon solutions and mixed-ribbon solutions can be stable or unstable saddles.
Furthermore, in the case of unstable saddles alternations between two different symmet-
rically related saddles generate different heteroclinic cycles. For alternating stationary (in
comoving frame) ribbons the persistence time in one saddle decreases with distance from
the onset. The persistence time for the heteroclinic cycle of alternating mixed ribbons
shows a more complicated dependence with variation in control parameters and seems
to follow an intermittency scenario of type III. Depending on whether the symmetrically
related solutions are stationary or time-dependent, the heteroclinic connection can be either
of oscillatory or nonoscillatory type.
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I. INTRODUCTION

For more than a century, the Taylor-Couette flow [1], flow confined by two independently driven
concentric cylinders, has played a paradigmatic role for studying the effects of viscosity, for testing
applications of low-dimensional dynamical systems theory, and for the development of hydrody-
namic stability theory [1–4]. Its geometrical simplicity allows for well-controlled experiments as
well as verification of numerical simulations and thus, to shed light on complex flow dynamics,
pattern formation and finally the transition to hydrodynamic turbulence [5–9].

The present paper examines the effect of radial mass flux (injection and suction through the
cylinder walls) and the resulting interaction and modifications of different stability mechanisms.
This setup is related to and motivated by the use of centrifugal instabilities and the results may
provide new insight for applications, such as rotating filtration [10], vortex flow reactors [11,12]
flow separation devices, such as food separation or oil-sand separation in the petroleum industry
[13]. Typically, these applications are based on a radial flow from the inner toward the outer
cylinder of a Taylor-Couette cell [12]. To be efficient, these separating devices are usually work
continuously to perform the separation, while the mixture enters at one side and the ‘clean’ flow
exits at the other. Thus, an intrinsic axial flow is present at all times, which favors helical flow
structures [1,14], which is a key motivation for the present work. The principal commercial use of
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this method is the extraction of plasma from whole blood [10,15,16] but it has been also proposed
as a method for various industrial filtration applications [17–25]. For possible applications, aside
from the knowledge of where instabilities appear in the (Rei, Reo, α) parameter space it is also
necessary to know what the new flows look like, e.g., azimuthally dominated or helical dominated
component. And an answer to this question, which itself is important, is the essential step toward our
main aim. Despite the well-known differences between a radial through-flow between two porous
cylinders and the generic rotating filtration in which the outer cylinder is nonporous, these studies
can provide insight into the fundamental mechanisms that alter the stability of Taylor-Couette flow
due to the presence of such a radial flow [26–30].

In addition, although our model is much simpler than the complex scenario for accretion disks,
the study of radial mass flux on Taylor-Couette flow may have potential relevance to the fluid
dynamics of astrophysical phenomena [31–33] as well to the polar vortex flow in the Earth’s
atmosphere [34]. In fact there are astrophysical examples in which external mass sources generate
radial inflow, thus producing accretion disks. Central to these structures and dynamics are more
complex typically spiraling flows, which form in situations such as motion around black holes
at the centers of galaxies, in binary stars or in disks during the birth process of stars. Here the
magnetorotational instability can be produced by ionization [35]. Such potential astrophysical
applications beyond any specific application or device proves that the Couette flow with radial mass
flux is of interest for a much wider range of problems beyond classical filtration devices.

The presence of a radial through-flow in the annulus between two differentially rotating porous
cylinders modifies the absolute stability of the Taylor vortex flow [26–29,36–38]. All these works,
whether experiments, linear or weakly nonlinear stability analysis, or numerical simulations, come
to the same conclusion: Both converging radial flow and sufficiently strong diverging flow have a
stabilizing effect on the Taylor instability, while weak to moderate diverging flow destabilizes the
system [26,38].

Using linear stability analysis and considering both axisymmetric and nonaxisymmetric pertur-
bations at various radius ratios the combined effects of axial and radial flow on the stability of
Taylor vortex flow has been investigated [30,38]. Martinand et al. [28] studied convective instability
of radial through-flow. They observed that radial flow only slightly affects the number of helices
and the critical Taylor number. For small axial flow the convective instability is axisymmetric, but
convective helical modes with an increasing number of helices having a helicity opposite to that
of the base flow dominate with increasing axial flow. Regarding absolute instabilities that occur
at higher Reynolds numbers they detected that unstable axisymmetric modes appeared for inward
radial flows, while helical absolute instability modes whose helicity is identical to that of the base
flow appear for outward radial flow.

Ilin and Morgulis [39] found (in linear stability analysis) that for counter-rotating cylinders
a destabilizing effect of a weak diverging flow can occur for all values of the gap between the
cylinders, depending on gap width. They detected that a sufficiently strong increase in radial flow,
directed either inward or outward, flattens the critical curves in the (Rei, Reo) plane, which means
that the stability properties of the basic flow are almost independent of Reo, i.e., the effect of the
outer cylinder becomes very weak, which is in agreement with earlier results [27]. But in all these
cases the primary stable bifurcating solutions are topological closed flow structures such as Taylor
vortex flow (TVF) [27] and wavy Taylor vortices (wTVF) [4,14,40]. However, Gallet et al. [31]
described the existence of unstable nonaxisymmetric modes in the linearized stability problem for
specific parameter conditions. The recent work by Martinand et al. [29] demonstrated that for wide
gap and sufficiently strong radial flow the critical mode becomes nonaxisymmetric leading to the
primary appearance of helical flow structures. The same result can be achieved by sufficiently fast
rotation of the outer cylinder in opposite directions. In both cases a Hopf bifurcation gives rise
to branches of spiral vortex flow (spirals, SPIs) [14,41–43] and ribbons (RIB) [4,41,44–49], both
appearing at a common threshold out of basic Circular Couette flow (CCF). Thus, RIB is similar
to standing waves, since it is an equal superposition of two spirals moving in axially opposite
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FIG. 1. Schematic of the Taylor-Couette system illustrating radial flow in counter-rotating configuration
including sketch of laminar velocity profile v(r, θ ) (not to scale). The radial flow can be directed outward
(α > O) (illustrated), or inward (α < O).

directions, upward and downward, and as a result they are only azimuthally rotating. Topological
speaking, RIB solutions are saddles in a comoving frame of reference.

Heteroclinic cycles [50,51], which are a collection of solution trajectories that connects equilib-
ria, periodic solutions or even chaotic sets [52], are a generic feature of dynamical systems with
symmetries. Such saddle-sink connections and their features have been investigated in detail in the
past [53–55]. Heteroclinic cycles are robust under perturbations that preserve the system symmetries
and they exist over a range of parameters.

To our knowledge a study of more complex helical structures such as SPI and their superpositions
to RIB or mixed ribbons (mRIB) and their interaction under radial flow is missing. The present study
provides this investigation.

The outline of the paper is as follows. Sec. II describes the basic equations and numerical method
used in the present study and provides an overview of all flow structures discovered including a list
of all the flows we have found. Sec. III presents numerical investigation of the bifurcation scenario
via Rei and α followed by an overview of all detected solutions in the (Rei, α) parameter space. Flow
dynamics and spatial-temporal characteristics of various flow structures are presented focusing on
alternations between unstable (m)RIB solutions and their heteroclinic connections. Finally, Sec. IV
provides the discussion and conclusion.

II. SYSTEM SETTING AND NUMERICAL PROCEDURE

Consider the flow driven in the annular gap between two independently rotating cylinders [1,44]
– the Taylor-Couette system (Fig. 1). The inner cylinder of radius Ri rotates at angular speed �i

and the outer cylinder of radius Ro rotates at angular speed �o. In the present study, we consider
in the axial direction periodic boundary conditions which are set to λ/(Ro − Ri ) = 1.6 (λ being the
axial wavelength), corresponding to an axial wave number k = (2π/λ) = 3.927. The fluid in the
annulus is assumed to be Newtonian, isothermal, and incompressible with kinematic viscosity ν.
The nondimensional Navier-Stokes equations governing the flow are

∂t u + (u · ∇)u = −∇p + ∇2u, ∇ · u = 0, (2.1)
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where u = (u, v,w) is the velocity in cylindrical coordinates (r, θ, z) and the corresponding vor-
ticity is ∇ × u = (ξ, η, ζ ). The system is governed by the following independent nondimensional
parameters:

Inner Reynolds number: Rei = �iRid/ν,

Outer Reynolds number: Reo = �oRod/ν,

Radial Reynolds number: α = uiRi/ν (= uoRo/ν, owing to continuity),

Radius ratio: b = Ri/Ro.

(2.2)

For this work we assume a wide gap with fixed radius ratio b = 0.5. The length and time scales of the
system are set by the gap width d = Ro − Ri and the diffusion time d2/ν, respectively. The pressure
in the fluid is normalized by ρν2/d2. Additionally, the outer Reynolds numbers is fixed to Reo =
−125, while only varying either the inner Reynolds numbers Rei or the radial Reynolds number
α. On the cylindrical surfaces, the velocity fields are u(ri, θ, z, t ) = (ui, Rei, 0) and u(ro, θ, z, t ) =
(uo, Reo, 0) (with uo = bui), respectively, where the nondimensional inner and outer radii are ri =
Ri/d and ro = Ro/d .

The governing equations and the boundary conditions are invariant under arbitrary rotations Rα

about the axis, arbitrary axial translation Zl and with respect to time translations φt0 . The actions of
these symmetries on the velocity field are

Rα (u, v,w)(r, θ, z, t ) = (u, v,w)(r, θ + α, z, t ), (2.3a)

Zl (u, v,w)(r, θ, z, t ) = (u, v,w)(r, θ, z + l, t ), (2.3b)

φt0 (u, v,w)(r, θ, z, t ) = (u, v,w)(r, θ, z, t + t0). (2.3c)

These idealizations lead to a unique CCF basic state which depends only on r. The system has
SO(2) × O(2) symmetry, where SO(2) is the group of arbitrary rotations about the axis and O(2) is
the group containing reflection at any height z and translations in z. The mean, possibly zero, axial
flux remains unchanged along the axial direction. At the same time all symmetries [Eq. (2.3)] are
conserved with only the radial profiles of the CCF basic state depending on the parameter α.

A. Numerical method and classification

The Navier-Stokes Eqs. (2.1) are solved using a second-order time-splitting method with con-
sistent boundary conditions for the pressure [56,57]. Our code G1D3 [58] is a combination of a
finite-difference method in the radial and axial directions (r, z) and a Fourier-Galerkin expansion in
the azimuthal direction (θ ) with time splitting resulting in a decomposition

f (r, θ, z, t ) =
∑

m

fm(r, z, t ) eimθ (2.4)

of all fields f ∈ {u, v,w, p}. For the parameter regime considered, the choice mmax = 10 (with m
being the azimuthal wave number) provides adequate accuracy. We use a uniform grid with spacing
δr = δz = 0.02 and time steps δt < 1/3800. For diagnostic purposes, we also evaluate the complex
mode amplitudes fm,n(r, t ) obtained from a Fourier decomposition in the axial direction

fm(r, z, t ) =
∑

n

fm,n(r, t ) einkz. (2.5)

More details regarding the description of the Fourier spectrum are provided in the Appendix.
Further, as a global measure to characterize various flow structures we use the total modal kinetic

energy

Ekin =
∑

m

Em = 1

2

∑
m

∫ 2π

0

∫ �/2

−�/2

∫ ro

ri

umu∗
mrdrdzdθ, (2.6)

124802-4



FLOW DYNAMICS BETWEEN TWO CONCENTRIC …

TABLE I. Flow state nomenclature and abbreviations. From left to right: flow M-stateD
m∗,A↔B (M denotes the

dominant azimuthal mode), with D describing the dynamics as t (time-dependent), m∗ identifies the dominant
modulated mode for mRIB solution and A↔B indicates a heteroclinic cycle (hc) between two symmetrically
related saddles, which are visited alternately. Furthermore the characteristics stable (s), unstable (u), alternating
are identified (cf. caption of Fig. 4). The relation �, � indicates that corresponding mode amplitudes are larger
or smaller, respectively; modes indicated as ±m have identical amplitudes. Note that these modes are not
necessarily the higher harmonics of the principal mode. Please see the Appendix for more details regarding the
description of the Fourier spectrum.

Flow (dominant) modes m Spec./Stab. Dynamics

TVF 0 s, [u] −
wTVF 0 ± 1 s rotating
L1-[R1-]SPI 1[−1] � −1[1] s, [u] left-[right-]winding, rotating
1-RIB ±1 s, [u] rotating
1-RIBA↔B ±1 hc alternating A ↔ B, rotating
M0-flow 0 u transitional
1-mRIBt ±1 � ±2 � ±3 s rotating, timedep.
1-mRIBt

A↔B ±1 � ±2 � ±3 a alternating A ↔ B, rotating, timedep.
M1t -flow 1 � 0 � −1 u transitional
M(-1)t -flow −1 � 0 � 1 u transitional
1-mRIB2 ±1 � ±2 � ±3 s rotating
1-mRIB3 ±1 � ±3 � ±2 s rotating
1-mRIBA↔B ±1 � ±3 � ±2 hc alternating A ↔ B, rotating
L1R1-MCS 1 � −1 s left-winding, rotating

where um (u∗
m) is the mth (complex conjugate) Fourier mode of the velocity field. Thus, for the

axisymmetric solutions (m = 0), e.g., CCF and TVF, only E0 is nonzero.

B. Nomenclature

The present study focuses on flow dynamics in a relatively short periodic domain with axial
wavelength λ = 1.6 and counter-rotating cylinders for fixed outer Reynolds number Reo = −125. A
common feature shared by most flows in the counter-rotating case in the absence of any radial flow
is that they are nonaxisymmetric. Typically m = ±1 for certain parameter regime. Usually these
states correspond to helical SPIs. However, in the present study most states are (m)RIB solutions
which are superposition of SPIs, which means that although helical modes m = ±1 are dominant [4]
their vortex structure typically has a strong azimuthal orientation. However, RIBs are axial standing
waves, while they can rotate azimuthally. Thus, in a comoving frame of reference they became
stationary. Table I provides an overview of various flows discussed in this work. Nomenclature,
including main characteristics, dominant modes, stability, and corresponding flow dynamics are
indicated.

III. RESULTS

A. Bifurcation behavior and parameter space

1. Bifurcation in Rei with constant radial flow α = 12

Figure 2 illustrates the branches of TVF (blue circles), 1-RIB (green lozenges), and 1-mRIBt

(green lozenges) for fixed radial flow α = 12 with increasing Rei [indicated by the arrow in the
phase diagram in Fig. 4(a)]. Solid lines with closed symbols indicate stable and dashed lines with
open symbols indicate unstable solutions, respectively. Shown are the modal kinetic energy Ekin

Eq. (2.6) [Fig. 2(a)] and the dominant radial flow field amplitudes |um,n| [Fig. 2(b)] at midgap and
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FIG. 2. Bifurcation diagrams for various vortex structures versus Rei for α = 12. Shown are (a) (time-
averaged) modal kinetic energy E kin (2.6) and (b) the dominant (time-averaged) radial flow field amplitudes
|um,n| at mid-gap contributed from the modes (m, n) as indicated. Solid [dashed] lines with filled [open]
symbols refer to stable [unstable] solutions. Flow structures are labeled in (a); see also Table I and text for
further explanation. Vertical arrows within the diagram indicate the direction of transition when one solution
loses its stability in favor of another one. For comparison the energy of the CCF basic state is also shown.
Small vertical arrows below the abscissa highlight parameters for which solutions are presented in more detail
in the following.

midheight, respectively. Note that for time-dependent solutions the quantities are averaged over one
period.

Starting at low Rei (left in Fig. 2) and increasing Rei the CCF basic state is succeeded by TVF
that appears via a circle pitchfork bifurcation at Rei ≈ 92.8 and remains stable until Rei ≈ 100.6
where it loses stability to 1-RIBA↔B. Both SPI and RIB appear via a primary Hopf bifurcation with
a common, finite frequency out of CCF at Rei ≈ 97.6, as a consequence of the breaking of the
O(2) symmetry (here in the axial direction) and are unstable close to onset. Eventually RIB become
stabilized at Rei ≈ 98.4. However, initially the RIB solution is unstable with periodic alternation
between two symmetrically related 1-RIBA and 1-RIBB, which generate the heteroclinic cycle (hc)
1-RIBA↔B. Although azimuthally travelling, 1-RIBA and 1-RIBB are stationary in a rotating frame
of reference identifying them as saddles. With increasing Rei both solutions eventually become
stable at Rei ≈ 103.1 and 1-RIBA↔B disappears. For higher Rei they are stable, coexisting until
Rei ≈ 120.2 at which a new solution is born. In a second supercritical Hopf bifurcation involving
larger azimuthal modes with m = ±2 and m = ±3), a new time-dependent mixed-ribbon solution

FIG. 3. Bifurcation diagrams for various vortex structures versus α for Rei = 124. For further description
see text and caption of Fig. 2.
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FIG. 4. (Rei, α) parameter space illustrating various (stable and unstable) solutions indicated as in Table II.
The vertical and horizontal arrows (a) and (b) indicate the parameter range of the bifurcation diagrams
presented in Figs. 2 and 3, respectively. In the hatched area, other perturbations, mainly with larger wave
numbers, destabilize the solutions. See text for further explanation.

(1-mRIBt ) is born. Note that here the time-dependence is crucial to distinguish this from the sta-
tionary 1-mRIB solution (cf. Fig. 3) discussed later. Continuously increasing Rei the 1-mRIBt exists
until the end of the parameter range investigated. But in the parameter region 129.3 � Rei � 132.6
the flow is again alternates between two symmetrically related solutions 1-mRIBt

A and 1-mRIBt
B and

thus generates another heteroclinic cycle 1-mRIBA↔B, similar to the scenario described previously
with 1-RIBA↔B. Starting at the largest Rei (right in Fig. 2) and continuously decreasing Rei one finds
the analogous sequence of solutions in reverse order with the only difference that at Rei ≈ 98.4 the
heteroclinic cycle 1-RIBA↔B and the flow evolves to the only remaining stable solution, TVF.

Regarding Fig. 2(a) it is evident that for low Rei the TVF is more energetic than the various RIBs.
But this eventually changes with increasing Rei, in particular, after TVF loses stability to 1-RIB
(vertical arrow). For Rei � 115 the various more complex 1-RIB solutions are more energetic than
the pure TVF.

2. Bifurcation in α with constant Reynolds number Rei = 124

After the previous discussion for constant radial flow (α = 12), Fig. 3 presents the bifurcation
scenario as a function of radial flow α at fixed inner Reynolds number Rei = 124 (see arrow (b)
in the phase diagram Fig. 4). As before the (time averaged) modal kinetic energy Ekin and mode
amplitudes |um,n| are shown. Variation in α results in a more complex bifurcation scenario compared
to variation with Rei.

Starting with small but negative, inwardly directed radial flow α < 0, (left in Fig. 3) one sees first
the two solutions 1-SPI and 1-RIB to appear together in a supercritical, O(2) symmetry-breaking
Hopf bifurcation at α ≈ −0.4. While 1-SPI is stable from the beginning, 1-RIB is stabilized later
with increasing radial flow at α ≈ 0.1 but loses its stability eventually again at α ≈ 1.3 where it
evolves into the stable solution 1-SPI. 1-SPI remains stable up to α ≈ 9.9, where it becomes unstable
and evolves to a more complex mixed cross-spiral (MCS) [48,49], here L1R1-MCS solution. It
should be noted that this is a stable MCS without any symmetry restrictions [48]. However, an
unstable branch of TVF bifurcates at α ≈ −0.2 and the first stable toroidal solution to appear with
increasing α is the wavy solution 1-wTVF at α ≈ 0.8 which loses its stability shortly afterwards
again at α ≈ 1.3. At this point it branches together with the hereafter stable TVF before this
eventually also loses its stability at α ≈ 6.7. Here the modes (1,±1) become finite, generating
another 1-wTVF [41]. Meanwhile, TVF continues as an unstable solution until strong radial outflow
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TABLE II. Various regions, labeled A–O, as presented in the (Rei, α) parameter space diagram (Fig. 4)
including their stability properties: stable (s), unstable (u), nonexistent (—), heteroclinic cycle (hc), alternating
(a).

Solution Region

A B[B′] C D E F G H[H′] I J K L M N O

TVF — s[u] u s s u s s[u] s s u u u u u
1-wTVF — — — — — s — — — — — — — — —
SPI s — s u s s u s u u u u u u u
wSPI — — — — — — s — — — — — — — —
1-RIB u — u u u u u u s — — — — — —
1-RIBA↔B — — — — — — — — — hc — — — — —
1-mRIBA↔B — — — — — — — — — — — hc — — —
1-mRIB — — — — — — — — — — — — s — —
1-mRIBt — — — — — — — — — — — — — a —
1-mRIBt

A↔B — — — — — — — — — — — — — a —
L1R1-MCS — — — — — — — — — — — — — — s

α ≈ 18.1 where it disappears leaving only the CCF basic state behind. While increasing α the
contribution of the helical modes (1,±1) within the 1-wTVF solution continuously increases until
α ≈ 9.6. Here the toroidal 1-wTVF disappears when it changes toward the helical time-dependent
1-mRIBt . Continuously increasing α, 1-mRIBt loses stability against L1R1-MCS at α ≈ 10.4 as
the two dominant mode amplitudes (m = 1 and m = −1) separate and become unequal [48,49].
However, MCS only exist in a narrow parameter window and for increasing α the flow moves back to
the former 1-mRIBt solution at Rei ≈ 11.6 before this solution loses its time dependence and ends in
a stationary 1-mRIB at α ≈ 12.8. Here the toroidally dominant modes (0,±1) vanish [Fig. 3(b)] and
leave a steady 1-mRIB behind. With increasing α the 1-mRIB exists initially as 1-mRIB2 (Fig. 14)
with dominant m = ±2 modes, which changes to 1-mRIB3 (Fig. 15) with dominant m = ±3 modes
at α ≈ 15.3. Eventually also 1-mRIB becomes unstable generating 1-mRIBA↔B (similar to the
scenario for 1-RIBA↔B) (Fig. 2). Finally, also 1-mRIBA↔B ceases to exist at α ≈ 16.6 and leaving
behind only the CCF basic state behind.

With decreasing α one finds essentially the same sequence of solutions in the opposite order as
with increasing α, starting with 1-mRIBA↔B and ending in 1-wTVF from which the flow evolves to
1-SPI after losing stability at α ≈ 1.45.

3. (Rei, α) parameter space

Figure 4 illustrates the (Rei, α) parameter space investigated here and provides an overview of
the solutions existing for the control parameters. The bifurcation diagrams of Figs. 2 and 3 were
obtained along the two arrows labeled (a) and (b).

Blue and orange lines denote the well-known primary bifurcation thresholds out of the CCF
basic state for TVF and SPI, respectively. The modifications in the stability threshold with variation
in α has been previously reported [26,38]. Both radial inflow and strong radial outflow destabilize
the system, while a moderate radial outflow (here 0 < α � 17.6) stabilizes the system. However,
variation of α also alters stability and sequence of primary bifurcating structures itself. For radial
inflow and slight radial outflow a stable helical SPI branch bifurcates primary out of CCF, while with
increasing α a branch of stable toroidal TVF is the first to appear. The two thresholds meet at the
point of higher codimension (cf. discussion in Ref. [41]) at α ≈ 3.5 where the stability is exchanged.
For α � 15.2 TVF bifurcates only unstable. The boundaries and curves above TVF and SPI stability
thresholds separate the various regions, labeled A–O, of various flow structures, as listed in Table II
including their stability properties [stable (s), alternating (a), unstable (u), nonexistent (—)].

124802-8



FLOW DYNAMICS BETWEEN TWO CONCENTRIC …

FIG. 5. Flow visualization of 1-RIBA↔B. Visualization of (1) 1-RIBA, (2) transitional M0-flow and
(3) 1-RIBB. Shown are (a) the radial velocity u(θ, z) on an unrolled cylindrical surface in the annulus at mid-gap
[red (yellow) color indicates in (out) flow], (b) isosurfaces of η [red (dark gray) and yellow (light gray) colors
correspond to positive and negative values, respectively, with zero specified as white], and (c) vector plot
[u(r, z),w(r, z)] of the radial and axial velocity components (including the azimuthal vorticity η (left) and
azimuthal velocity v (right), respectively. The thick contour lines correspond to η = 0 (left) and v/Rei = 0.5
(right), respectively. Control parameters: α = 12, Rei = 102. Note, for the M0-flow η = ±1.5 (2b).

Of special interest are the three regions in which various (m)RIB are stable, unstable, stationary
or time-dependent (cf. Table I): J: 1-RIBA↔B; L: 1-RIBt

A↔B; N: 1-mRIBt
A↔B;

However, we were not able to trace out the boundaries between all solutions for the full set
of parameters; the hatched area in Fig. 4 indicates schematically that in this area perturbations
(mainly with larger wave numbers) prematurely destabilize the solutions discussed here against
other significantly more complex flow structures.

B. Flow dynamics, structures and heteroclinic cycles

In the following, we will focus on the regions containing (m)RIB(t )
A↔B, i.e., alternation between

the two saddles (m)RIB(t )
A and (m)RIB(t )

B .

1. Stationary ribbon: 1-RIB

We will start with a 1-RIB solution, which appears in heteroclinic cycles (m)RIB(t )
A↔B between

the two unstable saddles 1-RIBA and 1-RIBB. (cf. regions J and I in phase diagram in Fig. 4). Visual-
izations of the two saddles 1-RIBA and 1-RIBB are presented in Fig. 5 together with the transitional,
toroidal M0-flow. Regarding the radial velocity u(θ, z) on an unrolled cylindrical surface in the
annulus at mid-gap [Fig. 5(a)] one can identify that 1-RIBA and 1-RIBB, are shifted by λ/4 in the
axial direction. The transitional M0-flow, although quite similar to the 1-RIB, can be identified by
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the chessboard pattern in the contours of radial velocity u(θ, z) [Fig. 5(2a)]. The similarity results
from the fact that both 1-RIB and M0-flow are axial nonpropagating structures, although their
generation process is crucially different. 1-RIB is a nonlinear superposition of two counter-rotating
and axially propagating, left- and right-winding, helical SPIs with equal mode amplitudes [4].
Thus, 1-RIB is a standing wave in axial direction while rotating in azimuth. Consequently, the
corresponding Fourier spectrum also contain helical modes. In contrast, the spectrum for M0-flow
does not contain helical modes [cf. Figs. 6(c) and 6(d)].

Figure 6 shows longer time series illustrating the time-periodic change from 1-RIBA via transi-
tional M0-flow toward 1-RIBB and vice versa. Illustrated are (a) global modal kinetic energy Ekin

together with local measures of the velocities u1, u2, and u3 [radial velocity at three distinct points
in the annulus: u1 = u(d/2, 0, �/4), u2 = u(d/2, 0, �/2), u3 = u(d/2, 0, 3�/4)] and (b) dominant
mode amplitudes |um,n|. Both 1-RIBA and 1-RIBB have identical kinetic energy, Ekin, and Fourier
spectra [Fig. 6(c)]. Within the transitional M0-flow Ekin almost vanishes. Analogously, the time
series of |um,n| illustrate the elimination of all helical modes m � 1 within the M0-flow, leaving
only the toroidal m = 0 mode [Figs. 6(b) and 6(d)].

However, we emphasize that although the M0-flow only contains m = 0 modes, it is crucially
different from classical TVF, which consists of a toroidal closed vortex. For our parameters TVF
branches super-critically and is stable, coexisting with other solutions (see Figs. 2 and 4). The M0-
flow does not contain toroidal closed vortices and additionally it is not axisymmetric [see Fig. 5(2a)].
Instead, M0-flow retains the symmetries of RIB, which are given by the symmetry group Z2.

The main dynamics during the transition from 1-RIBA toward 1-RIBB can be described as an
annihilation and regeneration of a vortex pairs (in the axial direction). First the vortex pairs of
1-RIBA relocate in its axial position (direction), while moving closer together which results in stretch
and compression in the annulus. With increasing time the compression of the vortex pairs eventually
results in an annihilation of these vortices, while at the same time two new vortices are generated,
which then expand into the annulus. The newly formed vortex pair is shifted about λ/4 in axial
direction and grows to establish again a temporal solution 1-RIBB. Hereafter the system remains
for a time that depends on the parameters in 1-RIBB, before eventually the scenario restarts with a
similar back switch to 1-RIBA. The process repeats as long no other external parameters, e.g., α or
Rei are changed. Heteroclinic connections between different solutions are not uncommon and has
been studied in various systems [50–55,59] in the past. For the current work of special interest is
the recent observation for RIB solutions [60] with oscillatory and nonoscillatory transition.

The phase portraits Figs. 6(e)–6(h) spanned by u1, u2, and u3 illustrate the connections, i.e.,
limit cycles, of 1-RIBA and 1-RIBB. The color coding corresponds to the time series presented in
Figs. 6(a) and 6(b). The local quantities u1 and u2 versus u3 highlight a perpendicular orientation
for 1-RIBA and 1-RIBB, respectively, resulting in a clover-leaf shape in the corresponding phase
portraits [Figs. 6(e)–6(h)], with the transitional M0-flow in the core region at the clover-leaf
intersection. The dynamics of the local quantities within 1-RIBA and 1-RIBB can also be detected in
the time series of u1 [u2] in Fig. 6(a). In fact u1 and u2 just behave contrarily in 1-RIBA and 1-RIBB,
respectively. While u1 has small modulation amplitudes in 1-RIBA and large ones in 1-RIBB, the
opposite holds for u2.

Figure 7 provides a comparison between ribbon solutions, stable and unstable. Shown are
azimuthal velocity contour profiles v/Rei = 0.5 within the gap (azimuthal position as indicated).
Figures 7(b) and 7(c) present profiles of 1-RIBA and 1-RIBB at Rei = 102, at which 1-RIBA↔B is
unstable with alternation between both. For comparison a stable 1-RIB solution (Rei = 110) is also
presented indicating differences in the contours based on the azimuthal position. While in 1-RIBA↔B

the contours for θ = 0 (black) and θ = 3/4π (blue) as well as for θ = π/2 (red) and θ = π (green)
have similar amplitudes, they differ strongly for 1-RIB.

In the heteroclinic cycle the flow remains in one of the saddles, 1-RIBA or 1-RIBB, for almost
identical time t ≈ 3.8 [cf. Figs. 6(a) and 6(b)]. The persistence time only changes with modification
in external parameters, e.g., α or Rei. Long time simulations confirmed this observation of constant
persistence time within one of the solutions as well as the transition time between them. For 1-RIBA
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FIG. 6. Visualization of 1-RIBA↔B. Shown are dynamics with time of (a) Ekin and u1 [u2 (light gray)],
(b) modes |um,n|; Fourier spectrum (m, n) of (c) 1-RIBA,B and (d) M0-flow, respectively. (e)–(h) Phase portraits
spanned by u1, u2, and u3 (see text for further description). Control parameters: α = 12, Rei = 102. For all
but (c, d) red and green colors indicate the 1-RIBA and 1-RIBB, respectively, while blue colors indicate the
transitional M0-flow.
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FIG. 7. Azimuthal velocity contour profiles at v/Rei = 0.5 in bulk gap with variation for various 1-RIB
(a) stable 1-RIB at Rei = 110, Snapshots within 1-RIBA↔B for (b) 1-RIBA and (c) 1-RIBB at Rei = 102 and
α = 12.

and 1-RIBB the persistence time increases with increasing Rei and thus approaching the stable 1-RIB
at Rei = 103.1 (Fig. 2).

2. Time-dependent Mixed-Ribbon: 1-mRIBt

In what follows we will focus on the various mRIB, which present the next step in complexity
after the classical RIB discussed above. To our knowledge this is also the first time that mRIBs have
been detected as stable solutions without any symmetry restrictions [48,49]. The crucial difference
with 1-RIB is the fact that for 1-mRIB aside from the helical dominant modes m = ±1 additional
modes m �= 1 are present, which are not higher harmonics of the basic mode. This includes toroidal
m = 0 as well as other helical m �= 0 modes of significantly larger amplitudes [Fig. 8(c)] (Just
the opposite holds for 1-wTVF [41]). Additionally, the nonlinear driven modes (m, n) = (0,±2)
is significant larger in mRIB than in wTVF due to the emergence. This results from the fact that
1-mRIB is a superposition of oppositely winding 1-wSPIs [(±1,±1) + (∓1,±1) = (0,±2)], while
a classical 1-RIB is a superposition of 1-SPIs.

a. Stable 1-mRIBt . Consider the stable time-dependent 1-mRIBt at α = 12, Rei = 125 (Figs. 8
and 9). Various time series for 1-mRIBt are shown in Fig. 8. While the global quantity Ekin has
period τ ≈ 0.34 (also visible in the mode amplitudes |um,n|) the velocities ui, i = {1, 2, 3} (as local
quantities) have more complex time dynamics. Both, the spectra (m, n) and time series of |um,n|
show that the dominant modulation mode for 1-mRIBt is m = ±2 and the corresponding (u1, u3)
phase portrait supports that 1-mRIBt lives on a two-torus shown in Fig. 8(d) [with the inset showing
the Poincaré section (u3, Ekin)]. Thus, the dimensionality is one greater than that of the heteroclinic
cycle shown in Fig. 6(e)–6(h). The modulation modes m = ±2 are significantly smaller than the
dominant m = ±1 modes for 1-mRIBt [Fig. 8(b) and 8(c)] and only vary in a narrow range in their
amplitudes over one period. Interestingly this does not apply to the toroidal mode m = 0, which
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FIG. 8. Specification of 1-mRIBt . Shown are dynamics with time of (a) Ekin and velocities u1, u2, u3,
(b) mode amplitudes |um,n|; (c) time-averaged (over one period) and scaled Fourier spectrum (m, n) [cf.
Fig. 9(d)], and (d) phase portraits spanned by u1 and u3 (cf. Fig. 6). The inset shows the corresponding Poincaré
section (u3, Ekin ) for u1 = 5 (vertical gray line). Control parameters: α = 12, Rei = 125. Small vertical arrows
below the abscissa in (b) indicate time steps for which solutions are presented over one period in Fig. 9. Note
the dominant modulation mode is m = ±2.

shows a huge variation within one period τ . In fact, it varies between near-zero values and being the
largest mode amplitude [cf. Figs. 8(b) and 9(1d)].

Figure 9 shows snapshots of 1-RIBt over one period τ = 0.34 [marked by vertical dashed lines
and red arrows on the abscissa in Fig. 8(b)]. The dominant modulation modes m = ±2 within the
1-mRIBt can be seen in the contours of the radial velocity u(θ, z) [Figs. 9(1,2)]. The toroidal
structure appearing within one period is also visible in u(θ, z) [Figs. 9(3,4)], which results from
the temporal dominant contribution of the m = 0 mode in the flow structure [Fig. 9(d)].

For 1-mRIB the amplitudes of larger azimuthal wave numbers m > 1 are equal, |um,n| = |u−m,n|.
This distinguishes mRIB from other helical superimposed flow states, e.g., MCSs [48,49], which
have different dominant mode contributions m �= −m.

b. Unstable 1-mRIBt
A↔B. Similar to previously discussed 1-RIBA↔B, 1-mRIBt

A↔B can also be
alternating (cf. Fig. 2 and region N in Fig. 4).

To provide a better understanding of the transition between the alternating solutions, Fig. 10
presents the same quantities as Fig. 6. Due to time-dependence of 1-mRIBt

A↔B, the corresponding
time series of local and global measures are more complex than for the stationary case of 1-RIBA↔B.
However, there are fundamental differences with the previous case.

Crucial first observation is that the transition between 1-mRIBt
A and 1-mRIBt

B can appear in two
different ways, either via M1t or M(-1)t [Fig. 10(b)], respectively. These are both helical solutions
but differ in their chirality, i.e., the sign of the dominant mode m = 1 [Fig. 10(e)] and m = −1
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FIG. 9. Flow visualization of 1-mRIBt
A↔B over one period τ ≈ 0.34. Snapshots of 1-mRIBt at (1) t = 0,

(2) t = T/4, (3) t = T/2, and (4) t = 3T/4 (cf. Fig. 8). Shown are (a) the radial velocity u(θ, z) on an unrolled
cylindrical surface in the annulus at mid-gap [red (yellow) color indicates in (out) flow], (b) isosurfaces of η [red
(dark gray) and yellow (light gray) colors correspond to positive and negative values, respectively, with zero
specified as white], and (c) vector plot [u(r, z),w(r, z)] of the radial and axial velocity components (including
the color-coded azimuthal vorticity η (left) and azimuthal velocity v (right), respectively. The thick contour
lines in (c) correspond to η = 0 (left) and v/Rei = 0.5 (right), respectively. (d) Corresponding spectrum (m, n).
Control parameters: α = 12, Rei = 125.

[Fig. 10(g)], respectively. In the scenario discussed above for 1-RIBA↔B we always found the same
transitional M0-flow independent of the direction [Fig. 5(2)]. For mRIB, the toroidal mode m = 0
only plays a minor role [cf. Figs. 10(c)]. All flows observed within 1-mRIBt

A↔B, 1-mRIBt
A, 1-mRIBt

B
and the two transitional flows, M1t -flow or M(-1)t -flow, are time-dependent.

Second difference from the previously discussed 1-RIBA↔B is the variation both in persistence
time within 1-mRIBt

A or 1-mRIBt
B as well as in the transition time between the saddles. Here,

both appear to be more random and we could not observe any correlation between the transitional
flows and the direction of transition. The heteroclinic connection and therefore the transition from
1-mRIBt

A to 1-mRIBt
B can appear via M1t -flow or M(-1)t -flow and vice versa [Figs. 10(b) and

11(a)]. Numerous long-time simulations did not allow us to identify any correlation between
1-mRIBt

A and 1-mRIBt
B and the direction over which intermediate flow the transition appears. An

example of a long-time series is presented in Fig. 11(a) for |um,n| showing numerous switches
between 1-mRIBt

A and 1-mRIBt
B via M1t and M(-1)t . Although there is no special selected per-

sistence time, it seems that for a set of system parameters there is an upper time limit, i.e., a
maximum persistence time, τp,max, for the flow within a solution. Latest at this time transition will
appear. For the parameters in Figs. 10, 11, and 13 we found an upper limit of the persistence
time 13.7 � τp,max � 13.9. The persistence time depends on the system parameters as seen for
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FIG. 10. Visualization of 1-mRIBt
A↔B. Shown are dynamics with time of (a) Ekin and u1, (b) modes |um,n|;

time averaged spectra (m, n) of (c) 1-mRIBt
A,B, (e) M1t -flow, and (g) M(-1)t -flow, respectively. (d, f, h) show

corresponding phase portraits spanned by u1, u2 and u3. Control parameters: α = 12, Rei = 131. For all but (c,
e, g) red and green colors indicate the solutions 1-mRIBt

A and 1-mRIBt
B, respectively, while blue and magenta

color highlights the transitional M1t -flow and M(-1)t -flow.
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FIG. 11. (a) Time series of mode amplitude |um,n| and kinetic energy Ekin illustrating an intermittency sce-
nario for the transition between the saddles 1-mRIBt

A and 1-mRIBt
B, via M1t -flow and M(-1)t -flow, respectively.

Control parameters are the same as in Fig. 10. Note that the time series suggest a maximum persistence time.
(b) Schematic illustration of the different transition behavior between 1-mRIBA and 1-mRIBB via M1t -flow or
M(-1)t -flow. The transition takes place after a random time, either via M1t -flow or M(-1)t -flow.

1-RIBA↔B. The closer to the onset of the branching of 1-mRIBt
A↔B, the larger is τp,max. This is a

manifestation of a complex underlying manifold with various attracting solutions in a quite narrow
region. The heteroclinic connection between 1-mRIBt

A and 1-mRIBt
B seems to be of oscillatory type

FIG. 12. Intermittency of 1-mRIBt
A↔B. Variation with Rei for the maximum persistence time τp,max of the

heteroclinic cycle 1-mRIBt
A↔B for α = 12 (cf. Fig. 2). Insets show the scaling of the τp,max with control param-

eter ε = |Rei − ReA
i,c| (top panel) and ε = |ReB

i,c − Rei| (bottom panel), where ReA
i,c and ReB

i,c are the critical
values at which intermittency appears. Both scenarios suggest a type III intermittency [61,62] approximated by
∝ ε−1.
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FIG. 13. Flow visualization of various flow pattern appearing within 1-mRIBt
A↔B. Snapshots of the time-

dependent flow for (1) 1-mRIBt
A, the transitional flows, (2) M1t -flow and (3) M(-1)t -flow, and (4) 1-mRIBt

B.
See Fig. 5 for further description. Control parameters: α = 12, Rei = 131.

[60]. This is also supported by the randomness in persisting time and transitional flow between the
two mixed ribbon states.

Although Ekin does not go down to nearly zero, there does seem to be a significant drop within the
transition process. In Fig. 6(a), the drop is from 2000 to 0 and in Fig. 10(a) from 4000 to 1000. The
time-averaged spectrum for 1-mRIBt

A↔B [Fig. 10(c)] is qualitatively similar for 1-mRIBt [Fig. 8(c)],
while the corresponding spectrum for M1t -flow an M(-1)t -flow [Figs. 10(e) and 10(g)] clearly show
the dominant transition modes m = 1 and m = −1, respectively. Although it is more complex, the
phase portrait of 1-mRIBt

A↔B [Figs. 10(d), 10(f) and 10(h)] shows characteristics observed for
1-RIBA↔B [Figs. 6(e)–6(h)]. Essentially one can identify two perpendicular orientated structures
for 1-mRIBt

A and 1-mRIBt
B. The observation of the 2-torus 1-mRIBt and the simpler heteroclinic

cycle 1-RIBt
A↔B suggest 1-mRIBt

A and 1-mRIBt
B are also tori.

The long time series of |um,n| and Ekin illustrated in Figure 11 support an intermittency scenario
for 1-mRIBt

A↔B. The persistence time τp within one of the solutions is random. However, a
maximum persistence time τp,max can be observed, which seems to depend on the system parameter,
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in particular, the onset of the heteroclinic cycle 1-mRIBt
A↔B. With increasing distance to the onset

the maximum persistence time τp,max decreases (Fig. 12), similar to the scenario for 1-RIBA↔B. The
schematic in Fig. 11(b) summarizes the transition behavior between 1-mRIBt

A and 1-mRIBt
B via the

two potential transitional states M1t -flow or M(-1)t -flow.
To look closer into the intermittency scenario, Fig. 12 presents the variation with Rei of τp,max

for 1-mRIBt
A↔B in the parameter region presented in Fig. 2. The insets illustrate the scaling of

τp,max with control parameter ε. For ε = |Rei − ReA
i,c|, where ReA

i,c is the critical values at which
intermittency appears with increasing Rei (from left in Fig. 12) and ε = |ReB

i,c − Rei|, where ReB
i,c

is the critical values at which intermittency appears with decreasing Rei (from right in Fig. 12). Both
approaches suggest a type III intermittency [61,62] based on the computation (circles) which can be
approximated by ∝ ε−1.

However, it should be noted that further analysis of the intermittency scenario is necessary. First
the number of points for τp,max for 1-mRIBt

A↔B are quite limited due to the very time intensive
computations required. Second for the parameters studied, 1-mRIBt

A↔B is only present in a relatively
narrow parameter island (Fig. 4). This makes a study of intermittency quite difficult. Changing a
control parameter and departing from the onset on one side means approaching the onset from the
other side. For further understanding future studies, in which 1-mRIBt

A↔B is not limited to an island
based on other system parameters, are required. A promising parameter to break up the parameter
island of 1-mRIBt

A↔B is the variation of the outer Reynolds number Reo.
Further visualization of the distinctive flow structures 1-mRIBt

A, 1-mRIBt
B, M1t -flow and M(-1)t -

flow are presented in Fig. 13. The radial velocity u(θ, z) highlights the dominant contributions. The
toroidally closed structure with dominant m = 0 mode can be observed for 1-mRIBt

A and 1-mRIBt
B

[Figs. 13(1,4)] as well as the helical left-winding shape for M1t -flow [Fig. 13(2)] and helical right-
winding shape for M(-1)t -flow [Fig. 13(3)].

3. Stationary 1-mRIB

Aside from the time-dependent 1-mRIBt discussed previously (Figs. 3 and 4) we also detected
simpler stationary 1-mRIBs. While RIBs are saddles and stationary in a comoving frame of
reference, 1-mRIB are traveling waves. Figures 14 and 15 illustrate two examples of a stationary
1-mRIBs with dominant modulation modes either m = ±2 or m = ±3.

a. Stationary 1-mRIB2. The stationary flow 1-mRIB2 (Fig. 14) appears with increasing α at
about α ≈ 12.4 when 1-mRIBt

A↔B disappears (cf. Fig. 3). The Fourier spectrum (m, n) [Fig. 14(d)]
shows the modes m = ±2 to be the second largest after the dominant ones, m = ±1. The corre-
sponding flow structure is basically toroidal orientated with only minor modifications in the helical
direction. That is, modifications in the contours of u(r, z) are significantly smaller than for 1-mRIBt

[Fig. 9(1,2)].
b. Stationary 1-mRIB3. With increasing α, 1-mRIB3 evolves out of 1-mRIBs

2 at α ≈ 15.2
(Fig. 3) when the modes m = ±3 become finite and become the second largest modes [Fig. 15(d)].
These dominant m = ±3 modes result in stronger modulation of the flow structure, e.g. they are
visible in u(r, z) and in the isosurfaces of η [Figs. 15(a) and 15(b)].

Similarly to their more complex time-dependent cousins 1-mRIBt , 1-mRIB can also alternate
between the two states 1-mRIBA and 1-mRIBB (Fig. 3). The transition scenario for 1-mRIBA↔B is
similar to that for 1-RIBA↔B (Fig. 6). The transitional flow is mainly a modulated M0-flow, but with
additional mode contributions (m �= 0). Despite the additional modes |m| > 1 we never observed the
helical flow structure as discovered for the time-dependent scenario 1-mRIBt

A↔B. The heteroclinic
connection is also nonoscillatory in this case [60]. As described previously this modulated M0-flow
(here including m �= 0) is different to the classical closed TVF structure with m = 0. As in the
previous scenario for alternating 1-RIBA↔B no toroidally closed vortex structure can be observed.
Moreover, as for 1-RIBA↔B the persistence time for 1-mRIBA↔B is determined by system parameters
and decreases with distance to the onset.
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FIG. 14. Stationary 1-mRIB2. Flow visualization and specification of 1-mRIB2. Shown are (a) the radial
velocity u(θ, z) on an unrolled cylindrical surface in the annulus at mid-gap [red (yellow) color indicates
in (out) flow], (b) isosurfaces of η [red (dark gray) and yellow (light gray) colors correspond to positive and
negative values, respectively, with zero specified as white], and (c) vector plot [u(r, z),w(r, z)] of the radial and
axial velocity components [including color-coded azimuthal vorticity η (left) and azimuthal velocity v (right)].
The thick contour lines on the left and right correspond to η = 0 (left) and v/Rei = 0.5 (right), respectively.
(d) Fourier spectrum (m, n). Control parameters: α = 15, Rei = 124.

C. Angular momentum transport

To further characterize the effect of radial mass flux, we examine the behavior of the angular
momentum and torque for a variety of flow states and different α. Figure 16(a) shows the mean
(axially and azimuthally averaged) angular momentum L(r) = r〈v(r)〉θ,z/Rei as a function of
radius r for structures and α as indicated in the caption. Except for α = 0 all curves show a
similar shape. In general, the profiles indicate typical behavior in that L(r) decreases monotonically
and is positive near the inner cylinder and negative near the outer one, with a slowly varying
section in between. With increasing α the profiles of L(r) become more strongly curved, while
the zero-crossing [L(r0) = 0] is displaced outwards [inset in Fig. 16(a): r0 with α]. Moreover, the
plateaulike region in the central region of the bulk becomes more pronounced as it moves to higher
values. Simultaneously with increasing α the variation of the profiles starting at the inner cylinder
decreases, the slope becomes more shallow. The opposite holds for the variation of profiles on
the outer cylinder; with increasing α the slope increases. In addition, the slopes at the point of
zero-crossing δ(r0) = ∂[L(r0)]/∂r [inset in Fig. 16(a)] essentially decrease almost linearly with α.
At the same time the induced rotation at the inner cylinder is preserved for larger distance into and
through the bulk width. Interestingly the profiles for TVFs and SPIs at the same value α are very
similar with slightly more visible belly shape characteristics in case of helical SPIs.

Figure 16(b) illustrates the dimensionless torque G(r) = νJω within the annulus. In calculating
the torque we used the fact that for a flow between infinite cylinders the transverse current of the
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FIG. 15. Stationary 1-mRIB3. Flow visualization and specification of 1-RIB3. Like Fig. 14, but for control
parameters α = 16, Rei = 124.

azimuthal motion Jω = r3[〈uω〉A,t − ν〈∂rω〉A,t ] (with 〈...〉A ≡ ∫
rdθdz
2πrl ), is a conserved quantity [63].

Like the angular momentum, the profiles of G(r) change as α is increased from an almost flat profile
for α = 0 toward an S-curve shape for larger α with significant increase in slope and absolute value
toward the outer cylinder. The result of this is also evident in the total torque Gtotal, which increases
almost linearly with α [inset in Fig. 16(b)].
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IV. DISCUSSION AND CONCLUSION

For more than a century the Taylor-Couette system has been extensively used in both computa-
tional and experimental studies and has proven itself as a foundational paradigm of fluid dynamics.
Over the years various modifications of the basic system have been formulated to investigate specific
aspects. One of them is to consider radial mass flux through porous cylinder walls. In this paper we
have investigated the influence of radial muss flux (measured by the radial Reynolds number α)
in wide gap Taylor-Couette flow with counter-rotating cylinders. This resulted in a more detailed
picture of the effect of a radial flow and its interaction with helical solutions.

The main results can be summarized as follows.
(1) Detection of stable ribbons (1-RIBs) at low Reynolds numbers with the smallest (helical)

azimuthal wave number m = ±1 [4]. To date the only stable RIBs reported have higher azimuthal
wave number m = ±2 (2-RIB) [46,47].

(2) Detection of stable mixed ribbons (1-mRIBs) as well as stable mixed-cross-spirals (MCS)
[48] without symmetry restrictions (e.g., subspaces [48,49]). Thereby mRIBs can appear either
stationary (1-mRIB) or time-dependent (1-mRIBt ).

(3) Depending on various system parameters unstable RIB and mRIB are found. We detected
heteroclinic cycles between two saddles 1-RIBA↔B, 1-mRIBA↔B as well as alternation 1-mRIB(t )

A↔B.
(4) The heteroclinic connection between the two symmetrically related states can be either of

oscillatory type (for 1-mRIB(t )
A↔B) or of nonoscillatory type (for 1-RIBA↔B) [60].

(5) For 1-mRIBt
A↔B a more complex intermittency scenario is observed, which seems to be type

III intermittency [62].
(6) The (Rei, α) parameter space (Fig. 4) illustrates a rich variety of flow structures.
Depending on the type of heteroclinic connection, oscillatory or nonoscillatory, the transitional

flow is different. For stationary solutions, 1-RIBA↔B and 1-mRIBA↔B, the connection between the
saddles is of nonoscillatory type and the flow evolves via a M0-flow with azimuthal mode m = 0.
We found the persistence time within and transition time between the two symmetrically related
1-(m)RIBs to be almost constant depending only on control parameters (e.g., α and Rei). The
transitional M0-flow [see Fig. 5(2)]is unrelated to the classical TVF, which is also m = 0, but
consists of toroidal vortices. No structures similar to toroidal vortices appear in the M0-flow.

Contrary to the alternation for 1-mRIBA↔B, for 1-mRIBt
A↔B the transition includes various

oscillating dynamics as here the two saddles are linked via a heteroclinic connection of oscillatory
type. As a result the transition itself appears via time-dependent helical flow states, with either left-
or right-winding dominance, M1t -flow and M(-1)t -flow, respectively. Contrary to the situation of
the stationary alternation, the heteroclinic cycles 1-RIBA↔B and 1-mRIBA↔B do not display a simple
correlation between control parameters and transition or persistence time. The transition between
these solutions related by symmetry appears randomly. However, a maximum persistence time pre-
determined by the system parameters can be identified for the heteroclinic cycle 1-mRIBt

A↔B. The
simulations suggest an intermittency scenario of type III, but further investigations are necessary to
fully understand this behavior. Similarly the transitional flow is also random, occurring via either
M1t -flow or M(-1)t -flow [Fig. 11(a)]. 1-RIB and 1-mRIB were identified as limit cycles whereas
time-dependent 1-mRIBt live on a two-torus invariant manifold.

Further interesting questions emerging from the present work are the effect of the boundary
conditions on the stability and flow characteristics. Gallaire and Chomaz [64] showed that the
stability may depend on the boundary conditions imposed at the inlet and the outlet. A concrete
question that arises in this context is that of a nonpermeable nonpermeable outer cylinder. In such a
setup an axial flow is needed to evacuate the additional mass entering radially. This is of particular
interest, as continuous working filtration devices have this configuration.

We hope that our computational results will encourage further experimental works with the aim
of controlling flows with further potential for application, e.g., flow separation devices for industrial
filtration applications [21–25], e.g., oil-sand separation [13] or extraction of blood plasma [15]. The
present work has not only revealed the onset of different instabilities, but moreover has studied
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solutions, of which the vortex structure is azimuthally dominated or helically dominated, together
with their topology within the parameter space. The spatio-temporal behavior of these flows is of
particular interest and could be used to specialize and personalize different applications with respect
to filtration and separation.

However, our results on helical flow structures, and their interaction to form (mixed) ribbons
under radial flow conditions may be relevant to astrophysical flows. It may shed some light on
experimentally observed physical phenomena. Examples are the formation of strong rotating flows
produced by a rotating disk [33] and polar vortex flow in the Earth’s atmosphere [32,34].
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APPENDIX

This section provides a description of the correlation between the azimuthal wave number M (see
Table I) and the 2D Fourier spectrum in Eqs. (2.4) and (2.5). To motivate this we will focus on SPI
(RIB are analogous).

In a comoving frame, the SPI is effectively one dimensional and stationary. The corresponding
fields do not separately depend on coordinates θ , z and time t , instead they are linked via a combined
phase variable,

� = kz + Mθ − ω(k, M )t (A1)

(k and M are the axial and azimuthal wave numbers, respectively, and ω is the frequency).
Thus, using the combined phase variable f (r, θ, z, t ) = F (r,�) [cf. Eq. (A1)] and comparing

the Fourier decompositions

f (r, θ, z, t ) =
∑
m,n

fm,n(r, t ) ei(mθ+nkz) =
∑

ν

Fν (r) eiν�, (A2)

one finds

fm,n(r, t ) = δm,nM e−inωt Fn(r). (A3)

As a result only the mode combinations m = nM appear in the 2D Fourier spectrum of a SPI with
azimuthal wave number M.

Figure 17 illustrates the θ − z plane of an unrolled cylindrical surface. Here lines of constant
phase, � = �0, (r =const. z0 = −M

k θ + ω(k,M )
k t + 1

k �0) are straight with constant slope −M/k.
With the convention of taking k to be positive an azimuthal wave number M > 0 implies a left
handed spiral [L-SPI, Fig. 17(a)] while M < 0 refers to a right handed spiral [R-SPI, Fig. 17(c)].
Under the operation z → −z, both L-SPI and R-SPI are mirror images of each other. Thus, the two
symmetrically related solutions L1-SPI (M = 1) and R1-SPI (M = −1) can be identified by |u1,1|
(|u−1,−1|) and |u−1,1| (|u1,−1|) [cf. Eq. (A3)].

Lines of constant phase and with them the whole spiral structure rotates in the azimuthal direction

θ with an angular velocity
•
θ= ω

M . Further using Eq. (A1) the axial phase velocity is given by wph =
ω
k = M

k = •
θ , which for L-SPI (M > 0) is positive and for R-SPI (M < 1) is negative. For 1-RIB as a

linear superposition of L1-SPI and R1-SPI the lines of constant phase in the θ -z plane [Fig. 17(b)]are
horizontal characterizing 1-RIB as standing wave in the axial direction, while rotating azimuthally.

The bottom of Fig. 17 shows the two-dimensional Fourier mode space spanned by the azimuthal
and axial Fourier mode indices m and n. Blue squares with red or orange circles denote linearly
driven modes and, respectively, superimpose to linear Fourier mode subspaces indicated by thick
lines. They represent linear subspace for L1-SPI (m = n, n) in Fig. 17(a) and the linear subspace
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FIG. 17. Characterization of various structures. (a) L1-SPI (orange), (b) 1-RIB (green), and (c) R1-SPI
(red). Top: lines of constant phase � = 0 on an azimuthally unrolled cylindrical surface (θ -z plane) at mid-gap.
Arrows indicate their velocities. Bottom: two-dimensional Fourier mode space spanned by the azimuthal and
axial Fourier mode indices m and n. Blue squares with red or orange circles denote linearly driven modes and
lead to to linear Fourier mode subspaces indicated by thick lines. They represent linear L1-SPI (m = n, n)
in panel (a) and linear R1-SPI (m = −n, n) in panel (c). Blue squares in panel (b) without a circle indicate
nonlinearly driven modes in 1-RIB.

for R1-SPI (m = −n, n) in Fig. 17(c). Dark blue squares in Fig. 17(b) without a circle indicate
nonlinearly driven modes in 1-RIB. Note, that for 1-RIB the modes (0,±1) are zero. In difference
with 1-mRIB the modes (0,±1) are finite.

[1] G. I. Taylor, Stability of a viscous liquid contained between two rotating cylinders, Philos. Trans. R. Soc.
London A 223, 289 (1923).

[2] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Clarendon Press, Oxford, 1961).
[3] R. C. DiPrima and H. L. Swinney, Instabilities and transition in flow between concentric rotating

cylinders, in Hydrodynamic Instabilities and the Transition to Turbulence, edited by H. L. Swinney and
J. G. Gollub, Vol. 45 in Topics in Applied Physics (Springer, Berlin, 1985).

[4] R. Tagg, The Couette-Taylor problem, Nonlin. Sci. Today 4, 1 (1994).
[5] V. I. Belinicher and V. S. L’vov, A scale-invariant theory of fully developed hydrodynamic turbulence, Zh.

Eksp. Teor. Fiz. 93, 533 (1987).
[6] R. H. Kraichnan, Models of Intermittency in Hydrodynamic Turbulence, Phys. Rev. Lett. 65, 575 (1990).
[7] C. Beck, Superstatistics in hydrodynamic turbulence, Physica D: Nonlin. Phenom. 193, 195 (2004).
[8] Y. Li and C. Meneveau, Origin of Non-Gaussian Statistics in Hydrodynamic Turbulence, Phys. Rev. Lett.

95, 164502 (2005).
[9] G. L. Eyink and K. R. Sreenivasan, Onsager and the theory of hydrodynamic turbulence, Rev. Mod. Phys.

78, 87 (2006).
[10] G. Beadoin and M. Y. Jaffrin, Plasma filtration in Couette flow membrane devices, Artif. Organs 13, 43

(1989).
[11] A. Schwille, D. Mitra, and M. Lueptow, Design parameters for rotating cylindrical filtration, J. Membr.

Sci. 204, 53 (2002).

124802-23

https://doi.org/10.1098/rsta.1923.0008
https://doi.org/10.1007/BF02430624
https://doi.org/10.1103/PhysRevLett.65.575
https://doi.org/10.1016/j.physd.2004.01.020
https://doi.org/10.1103/PhysRevLett.95.164502
https://doi.org/10.1103/RevModPhys.78.87
https://doi.org/10.1111/j.1525-1594.1989.tb02831.x
https://doi.org/10.1016/S0376-7388(02)00016-9


SEBASTIAN ALTMEYER

[12] S. Lee and R. M. Lueptow, Rotating membrane filtration and rotating reverse osmosis, J. Chem. Eng. Jpn.
37, 471 (2004).

[13] J. Masliyah, Z. J. Zhou, Z. Xu, J. Czarnecki, and H. Hamza, Understanding water-based bitumen
extraction from Athabasca oil sands, Can. J. Chem. Eng. 82, 628 (2004).

[14] C. D. Andereck, S. S. Liu, and H. L. Swinney, Flow regimes in a circular Couette system with indepen-
dently rotating cylinders, J. Fluid Mech. 164, 155 (1986).

[15] R. M. Lueptow and A. Hajiloo, Flow in a rotating membrane plasma separator, Trans. Am. Soc. Artif.
Intern. Organs 41, 182 (1995).

[16] K. Ohashi, K. Tashiro, F. Kushiya, T. Matsumoto, S. Yoshida, M. Endo, T. Horio, K. Ozawa, and K. Sakai,
Rotation-induced Taylor vortex enhances filtrate flux in plasma separation, Trans. Am. Soc. Artif. Intern.
Organs 34, 300 (1988).

[17] K. H. Kroner, V. Nissinen, and H. Ziegler, Improved dynamic filtration of microbial suspensions,
Bio/Technology 5, 921 (1987).

[18] K. H. Kroner and V. Nissinen, Dynamic filtration of microbial suspensions using an axially rotating filter,
J. Membr. Sci. 36, 85 (1988).

[19] B. Hallström and M. Lopez-Leiva, Description of a rotating ultrafiltration module, Desalination 24, 273
(1978).

[20] W. Tobler, Dynamic filtration-the engineering concept of the Escher Wyss pressure filter, Filtr. Sep. 15,
630 (1979).

[21] H. B. Winzeler and G. Belfort, Enhanced performance for pressure-driven membrane processes: The
argument for fluid instabilities, Membr. Sci. 80, 35 (1993).

[22] A. Margaritis and C. R. Wilke, The rotorfermentor. I. Description of the apparatus, power requirements,
and mass transfer characteristics, Biotechnol. Bioeng. 20, 709 (1978).

[23] W. Tobler, Dynamic filtration: Principle and application of shear filtration in an annular gap, Filtr. Sep.
19, 329 (1982).

[24] T. Murase, E. Iritani, P. Chidphong, K. Kano, K. Atsumi, and M. Shirato, High speed microfiltration using
a rotating, cylindrical ceramic membrane, Int. Chem. Eng. 31, 370 (1991).
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