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Effect of elongational flow on ferrofuids under a magnetic field

S. Altmeyer* and Younghae Do†

Department of Mathematics, Kyungpook National University, Daegu 702-701, Korea

J. M. Lopez‡

School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona 85202, USA
(Received 21 January 2013; revised manuscript received 22 May 2013; published 8 July 2013)

To set up a mathematical model for the flow of complex magnetic fluids, noninteracting magnetic particles with
a small volume or an even point size are typically assumed. Real ferrofluids, however, consist of a suspension of
particles with a finite size in an almost ellipsoid shape as well as with particle-particle interactions that tend to
form chains of various lengths. To come close to the realistic situation for ferrofluids, we investigate the effect of
elongational flow incorporated by the symmetric part of the velocity gradient field tensor, which could be scaled
by a so-called transport coefficient λ2. Based on the hybrid finite-difference and Galerkin scheme, we study the
flow of a ferrofluid in the gap between two concentric rotating cylinders subjected to either a transverse or an
axial magnetic field with the transport coefficient. Under the influence of a transverse magnetic field with λ2 = 0,
we show that basic state and centrifugal unstable flows are modified and are inherently three-dimensional helical
flows that are either left-winding or right-winding in the sense of the azimuthal mode-2, which is in contrast
to the generic cases. That is, classical modulated rotating waves rotate, but these flows do not. We find that
under elongational flow (λ2 �= 0), the flow structure from basic state and centrifugal instability flows is modified
and their azimuthal vorticity is linearly changed. In addition, we also show that the bifurcation threshold of the
supercritical centrifugal unstable flows under a magnetic field depends linearly on the transport coefficient, but
it does not affect the general stabilization effect of any magnetic field.
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I. INTRODUCTION

There has been much interest recently in the use of
ferrofluids [1] due to a wide variety of applications, ranging
from their use in computer hard drives to their use in laboratory
experiments to study geophysical flows [2,3]. A fundamental
understanding of their magnetohydrodynamics is essential
in order to better exploit their potentials. Ferrofluids are
manufactured fluids consisting of dispersion of magnetized
nanoparticles in a variety of liquid carriers, which can be
stabilized against agglomeration by the addition of a surfactant
monolayer onto the particles. In the absence of a magnetic
field, the magnetic nanoparticles are randomly orientated,
the fluid has zero net magnetization, and the presence of
the nanoparticles only slightly alters the fluid’s viscosity and
density. When applying a sufficiently strong magnetic field,
the ferrofluid flows toward regions of the magnetic field, and
the hydrodynamics properties such as the viscosity can be
significantly changed [4,5].

When describing the hydrodynamics of ferrofluids, it is
assumed that the particles aggregate to form clusters having
the form of chains, and thus it hinders the free flow of the fluid
and increases the viscosity [6–8]. In this type of structure’s
formation, it is also assumed that the interaction parameter
is usually greater than unity [1], thus the strength of the
grain-grain interaction can be measured in terms of the total
momentum of a particle.
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For a magnetodissipative structure of ferrofluid dynamics,
a different type of model equations [9] based on general
principles is derived in which both the Debye theory [10] and
the effective field theory by Shliomis [4,11] are included as
special cases. In such a derivation for macroscopic ferrofluid
dynamics, the magnetization’s relaxation equation includes
an additional term that is proportional to the product of the
magnetization’s magnitude and the symmetric part of the
velocity gradient tensor, which can describe an elongational
flow scaled by a so-called transport coefficient λ2. Such a term
also exists in the dynamics of nematic liquid crystals as the
flow alignment’s effect on the director field in an applied shear
flow [12].

The authors in Ref. [9] consider the term λ2 as a material-
dependent function of thermodynamic variables such as
density, concentration, and temperature, but independent of
shear. Then they show that λ2 can be handled as a reactive
transport coefficient which does not enter the expression for
entropy production. In addition, by comparing the experimen-
tal measurement for the magnetovortical resonance [13,14],
they estimated λ2 ≈ 2.54 for their used ferrofluid and for
flow-induced modification of the relaxation time, and they
argued that the shear flow induces fracture of dynamical
particle chains, which leads to a reduced effective dipolar
interaction between the particles.

For the nonequilibrium magnetization of the ferrofluid
in the Taylor-Couette system for a simple stationary flow
configuration subjected to a homogeneous transverse magnetic
field, the first experiments [6,15] show that the symmetric
part of the velocity gradient (i.e., the elongational flow
component) is not zero. Thus, this result indicates that λ2

significantly affects the magnetization vector in the ferrofluid
on microstructural properties of the ferrofluid.
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For plane shear flow, the vorticity vanishes but the sym-
metric part of the velocity gradient tensor does not. Thus,
for spherical particles, the relaxation of magnetization is not
affected. This implies that λ2 is equal to zero. In contrast,
for elongated structures, such flows produce a radial gradient
of angular momentum acting on the structures, which will
alter the relaxation of magnetization of the fluid. In particular,
considering the impact of particle-particle interaction of fluids,
the term λ2 is not zero. For instance, in Refs. [6,15], nonzero
λ2 was estimated: 0 < λ2 � 0.88, which depends on the used
ferrofluid. Numerical analyses of the linearized Navier-Stokes
equations with pure axial applied magnetic field suggest that
the term λ2 can modify the bifurcation threshold of primary
instabilities [25].

In this paper, with the aim of investigating the influence of
elongational flow effects, we do direct numerical simulations,
which correspond to the experiments reported in Refs. [6,15],
in a finite length Taylor-Couette system (� = 20) enclosed by
stationary end walls with an outer cylinder mostly at rest. Here,
parameter regimes and material properties of the ferrofluids
used in the cited experiments are used.

The paper is subdivided into four parts. Following the
introduction, Sec. II describes the model system for the
magnetization including λ2 and methods of investigation.
It presents the velocity field and describes the implications
of the magnetic terms in the generalized Navier-Stokes
equations. In Secs. III and IV, we elucidate how the basic
flow and the centrifugal instability are influenced under a finite
transport coefficient λ2 in a transverse and an axial magnetic
field, respectively, which are the main results of this paper.
We focus on bifurcation properties and the spatiotemporal
dynamics of the involved flow states. Further, we explain the
enforcing and counteracting effect of λ2 and the untouched
stabilization effect of any applied magnetic field. Finally,
Sec. V summarizes the main results and draws conclusions.

II. GOVERNING EQUATIONS AND
NUMERICAL TECHNIQUE

Consider an incompressible, isothermal, homogeneous,
monodispersed ferrofluid with kinematic viscosity ν and den-
sity ρ in the annular gap between two independent cylinders.
The inner cylinder of radius R1 rotates at angular speed ω,
but the outer cylinder of radius R2 is stationary. The end walls
enclosing the annulus are stationary. The length-to-gap aspect
ratio of the annulus and the radius ratio are fixed at � = 20 and
R1/R2 = 0.5, respectively, which is a typically geometrical
setting used in the experiments; see, e.g., [7]. Using the gap
width d = R2 − R1 as the length scale, the diffusion time
d2/ν as the time scale, a scaling pressure with ρν2/d2, the
magnetic field H, and the magnetization M with (ρ/μ0)0.5ν/d,
the nondimensional governing equations are

(∂t + u · ∇)u − ∇2u + ∇p = (M · ∇)H + 1
2∇ × (M × H),

∇ · u = 0, (2.1)

where u = (u,v,w) is the velocity in the cylindrical polar
coordinate system (r,θ,z) and its corresponding vorticity is
(ξ,η,ζ ). Here, a homogeneous external magnetic field of
strength Hx or Hz is imposed in either the transverse x direction
or the axial z direction, respectively, where x = r cos θ and

μ0 is the magnetic permeability of free space. For velocity
boundary conditions, it is zero on all stationary boundaries,
but on the rotating inner cylinder, u(r1,θ,z) = (0,Re,0), where
Re is the Reynolds number:

Re = ωr1d/ν. (2.2)

The nondimensional inner and outer cylinder radii are
r1 = R1/(R2 − R1) and r2 = R2/(R2 − R1), respectively.

Equation (2.1) is solved together with an equation that
describes the magnetization of the ferrofluid. A generic
approximation is to use the equilibrium magnetization of an
unperturbed state with homogeneously magnetized ferrofluid
at rest with the mean magnetic moments orientated in the
direction of the magnetic field, Meq = χH, where χ is the
magnetic susceptibility of the ferrofluid, determined using
Langevin’s formula [16]. In this paper, our used ferrofluid
corresponds to APG933 [17] with χ = 0.9.

In our study, we have used the Niklas approximation
[18–21] at near equilibrium with small ‖M − Meq‖ and small
relaxation times τ � 1, where  = ∇ × u/2 is the vorticity,
 is the absolute value, and τ is the magnetic relaxation time.
To determine the relationship between the magnetization M,
the magnetic field H, and the velocity u, we may consider an
additional dependence of the magnetization on the symmetric
part of the velocity gradient S = 1

2 (∂iuj + ∂jui). Finally, we
can get that

M − Meq = c2
NF, (2.3)

where F =  × H + λ2SH and c2
N = τ/(1/χ + τμ0H

2/

6μ�) is the Niklas coefficient with the dynamic viscosity μ,
the vacuum viscosity μ0, and the volume fraction � of the
magnetic material.

Note that the relaxation time τ could typically be defined by
τ = τB〈D3〉 1

3 , where τB is the Brownian relaxation time and
〈D3〉 1

3 is the averaged diameter of the magnetic particles. Here,
to investigate the effect of elongational flow, we assume that
τ is constant, which is independent of the magnetic field H.
Our used relaxation time in this paper is from the experimental
result [17] (τ = τAPG933/τD = 0.0018).

Using Eq. (2.3), the magnetization part in Eq. (2.1) can
be eliminated. We thus have the following ferrohydrodynamic
equation of motion [9]:

(∂t + u · ∇)u + ∇pM − ∇2u

= −c2
N

2
{H∇ · F + H × ∇ × F} , (2.4)

where pM is the dynamic pressure incorporating all magnetic
terms which can be written as gradients, i.e., ∇(H · H) and
∇[(Heq − H) · M].

In our numerical simulations, we assume that the internal
magnetic field is equal to the external imposed magnetic field.
It is known as a leading-order approximation [20] and suffi-
ciently good for a “first” numerical investigation for the effect
of elongational flow. Therefore, Eq. (2.4) can be simplified:

(∂t + u · ∇)u − ∇2u + ∇pM

= s2
N {∇2u − 2λ2∇ · SH − H × [2∇ × ( × H)

−H × ∇2u + λ2∇ × SH]}. (2.5)
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In this approach, the magnetic field and all the magnetic
properties of the ferrofluid could be influenced by
the velocity field, the transport coefficient λ2, and the
magnetic field (Niklas) parameter s2

N = siei , i = x,z, where
sx = [2(2 + χ )/(2 + χ )2 − χ2η2]HxcN and sz = HzcN .

Note that in our approach, the transport coefficient λ2 is
just a number [9], which can be scaled by the term describing
the elongational flow and is always independent of H. Thus,
it only appears in combination with the symmetric component
of the velocity field tensor. However, in real ferrofluids
an H dependence takes place in the microscopic aspect
of the dynamics of ferrofluids with chains or nonspherical
particles [24].

The ferrohydrodynamic system (2.5) is numerically solved
with the code G1D3 [20,21], which combines a finite-difference
method of second order in (r,z) and time (explicit) with Fourier
spectral decomposition in θ . The variables are written as

f (r,θ,z,t) =
mmax∑

m=−mmax

fm(r,z,t) eimθ , (2.6)

where f denotes one of {u,v,w,p}. To provide adequate
accuracy for the parameter regimes studied here, we use
mmax = 8, and uniform grids with discretization length
δr = δz = 0.05 and time steps δt < 1/3800.

A. Symmetries

In the absence of any external applied magnetic field, the
finite Taylor-Couette system, where the fluid is confined by
end walls, is invariant to arbitrary rotations about the axis
and the reflections about axial midheight. With an imposed
transverse magnetic field, these symmetries are broken and the
flow is inherently three-dimensional for any nonzero Re and
sx , as a result of the rotating inner cylinder with the transverse
magnetic field. As discussed in Ref. [21], the only m = 2 mode
contribution is stimulated. Likewise, a pure axial magnetic
field does not stimulate any further mode contributions. With
the outer cylinder at rest and with the rotating inner cylinder
in a clockwise direction (from the top of the system), the
interaction of the magnetic terms in the ferrohydrodynamic
equation results in a downward directed force on the side,
where the field enters the system (ϕ = 0), and an upward
directed force on the opposite side (ϕ = π ), where the field
exits the annulus. Thus, the resultant flow provides complex
symmetries. There is the reflection KH

z about the annulus’
midheight plane along with an inversion of the magnetic field
direction and the rotation invariance RH

α for discrete angle
α = π along with an inversion of the magnetic-field direction.
Here the angle π is just aligned with the direction of the
magnetic field to enter the annulus. The actions of these
symmetries on the velocity fields are

RH
π (u,v,w,H )(r,θ,z) = (u,v,w,−H )(r,θ + π,z),

(2.7)
KH

z (u,v,w,H )(r,θ,z) = (u,v,−w,−H )(r,θ,−z).

This gives the identical transformation and action,

RH
π LW = LW,

where LW (RW) indicates left-winding (right-winding) char-
acteristics in the azimuthal wave number m = 2, respectively

(cf. Sec. III A). Thus, this rotation action does not affect the
solutions. Due to the reflection action, the left-winding solution
may change the right-winding one or vice versa, i.e.,

KH
z LW = RW.

Therefore, corresponding LW and RW solutions have iden-
tical modal kinetic energies. In this paper, if not explicitly
explained, we will just consider one, mostly the LW solution.

III. BASIC FLOWS

A. Pattern formation with sx

First of all, we discuss the influence of the transverse mag-
netic field with λ2 = 0. To investigate the flow modification
of the magnetic field, we consider the difference between
the azimuthal vorticity associated with flow states with and
without any magnetic field, i.e.,

�η := η(sx) − η(sx = 0).

Figure 1 shows isosurfaces of �η by increasing the
transverse magnetic-field strength sx as indicated. The top row
in Fig. 1 shows the full solutions while the bottom row is of

(a) sx = 0.1 (b) 0.2 (c) 0.3 (d) 0.6 (e) 0.6

FIG. 1. (Color online) Isosurfaces of �η = η(sx) − η(sx = 0)
for LW (a)–(d) and RW (e) at Re = 60, λ2 = 0, and different
transverse magnetic-field strengths sx as indicated. The top row shows
differences of the full solution [isolevel shown at �η = ±0.06 (a),
±0.08 (b) and (c), and ±2 (d) and (e)] and the bottom row is of the
m = 2 contributions [isolevel shown at �η = ±0.001 (a), ±0.003 (b)
and (c), and ±0.03 (d) and (e)]. Note that (e) gives the RW at the
same parameters as the LW shown in (d). Red (dark gray) [yellow
(light gray)] indicates positive (negative) values.
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FIG. 2. Variation of the total modal kinetic energy E vs sx

for Re = 60 and λ2 = 0. Note that the energy is identical for LW
and RW.

m = 2 contributions. Obviously, due to the finite transverse
magnetic field, the basic state is changed. In particular,
the strengthened m = 2 azimuthal component modifies the
flow pattern in the whole bulk. Here, the m = 2 azimuthal
component contributes either LW or RW symmetrically related
to each other. These states are stationary by being pinned
into the position of the imposed transverse magnetic field
which generates them. In Fig. 1, we only present the LW
solutions, except in part (e), which gives the RW under the
same parameter setting for the LW shown in (d). Under the
influence of the transverse magnetic field, such a degenerated
basic state with different helicity in Taylor-Couette flow based
on the symmetry breaking has not been previously reported.

For the basic state, Fig. 2 shows the variation of the total
modal kinetic energy E (as a global measure) versus sx :

E :=
∑
m

Em =
∫ 2π

0

∫ �/2

−�/2

∫ ro

ri

umu∗
mr dr dz dθ, (3.1)

where um is the mth Fourier mode of the velocity field. In both
cases of LW and RW, the total modal kinetic energy E is the
same. This implies that there is a symmetry relation.

B. Flow modifications under elongational flow

To understand the influence of elongational flow (λ2 �= 0),
we will investigate the flow modification generated by the
transverse magnetic field with λ2 �= 0. In the absence of λ2,
the magnetic-field dependence sx affects the flow modification,
as shown in Fig. 1. That is, for small sx , the flow pattern is
almost reflection-symmetric, as shown in Fig. 1(a), but for
stronger sx , we can see the helical shape in the m = 2 azimuthal
component, as shown in Figs. 1(d) and 1(e). Thus, we will
focus on comparable cases with small and strong magnetic-
field strengths sx . As a comparable or reference solution to
check the effect of elongational flow, we will consider the LW
solution shown in Fig. 1(a) with sx = 0.1, and then examine the
difference in the azimuthal vorticity before and after applying
the finite transport coefficient λ2:

�2η := η(λ2 �= 0) − η(λ2 = 0). (3.2)

To investigate the influence of a small magnetic-field strength
with a finite transport coefficient, for the fixed sx = 0.1, Fig. 3
shows the isosurface of �2η for the transport coefficient
dependence λ2 [top row for the difference �2η in azimuthal
vorticity of the full solution and bottom row for the difference
�2η(m = 2) in azimuthal vorticity for the m = 2 azimuthal

(a) λ2 = 0.1 (b) 0.4 (c) 0.8

FIG. 3. (Color online) Isosurfaces of �2η = η(λ2 �= 0) − η

(λ2 = 0) for LW at Re = 60, sx = 0.1, and λ2 as indicated. The
top row is of the full solution [isolevel shown at (a) �2η = ±0.005
and (b) and (c) ±0.05] and the bottom row is of the m = 2
contributions [isolevel shown at �2η (a) ±1.12 × 10−5 and (b) and
(c) ±5.2 × 10−4].

component]. The variation of the magnitudes for the isolevel
of plotted surfaces is finite, but quite small (cf. also Fig. 4). It
is also satisfied for both cases [�2η, �2η(m = 2)]. For such
small magnetic-field strength sx with finite λ2, we see that
the flow is modified in the whole interior of the bulk. But the

0
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m
ax

(Δ
2η
)

0 0.2 0.4 0.6 0.8
λ2

0.0
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0.3
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02 m
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(Δ

2η
(m
=
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)

FIG. 4. Variation of max(�2η) and max[�2η(m = 2)] for LW vs
λ2 for Re = 60 and sx = 0.1. Lines are linear fits.
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important fact is that its symmetry is not affected. When figures
are compared in the sense of the m = 2 azimuthal component,
i.e., the bottom row of Fig. 3 and the bottom row of Fig. 1(a),
they are very similar in color and shape. Thus, at least for
these control parameters (sx = 0.1 with λ2 �= 0), the effect of
the magnetic-field strength sx will be enforced by a finite λ2.

Figure 4 shows how the maxima of �2η and �2η(m = 2)
vary with λ2. Although the maxima of these values are
significantly different, they are linearly scaled with λ2 starting
at zero. Lines in Fig. 4 are calculated by linear regression
fitting for the numerical data.

From the bottom row of Figs. 1(c)–1(e), we can see that the
helical symmetry in the m = 2 azimuthal component is much
more pronounced even in a larger magnetic-field strength. To
investigate the influence of finite λ2 for such a larger magnetic-
field strength, we will consider the parameter setting and the
flow shown in Fig. 1(d) as the initial solution, which has a
left-winding symmetry in the m = 2 azimuthal component.

For a fixed magnetic-field strength sx = 0.6 (or a larger
magnetic-field strength), Fig. 5 shows isosurfaces of azimuthal
vorticity differences, �2η and �2η(m = 2), with a different
finite transport coefficient λ2 (top row for the full solution and
bottom row for m = 2 contributions). The top row in Fig. 5
shows that the flow modification of the full field occurs locally

(a) λ2 = 0.1 (b) 0.2 (c) 0.3 (d) 0.4 (e) 0.8

FIG. 5. (Color online) Isosurfaces of �2η = η(λ2 �= 0) − η

(λ2 = 0) for LW at Re = 60, sx = 0.6, and λ2 as indicated. The
top row is of the full solution (isolevel shown at �2η = ±1) and
the bottom row is of the m = 2 contributions (isolevel shown at
�2η = ±0.02).

near the Ekman boundary layers, and then by increasing λ2

it strengthens more into the bulk. In the sense of the m = 2
azimuthal component, the flow is modified into the whole
interior of the bulk under the influence of a finite λ2, as shown
in the bottom row of Fig. 5. It is very similar to the case of
an applied transverse magnetic field with λ2 = 0, compared
to Fig. 1. Therefore, it implies that the modification of flow
becomes more pronounced by enlarging λ2.

By comparing Figs. 1(a) and 3, we can say that the transport
coefficient dependence in a small magnetic-field strength is
very weak, because the flow modified by λ2 almost coincides
with Fig. 1(a) when comparing the color indicated in the
figures. However, in the shape of the modified flows, it is
changed and more complicated.

For the dependency of the transport coefficient in large
magnetic-field strength, the flow modification keeps the
helical left-winding symmetry in the m = 2 contribution if
the transport coefficient is comparable small, as shown in
Figs. 5(a)–5(c). But, for a larger transport coefficient, see
Figs. 5(d) and 5(e), we can see that there is a switch from
left- to right-winding even when starting the left-winding
solution (λ2 = 0) as the initial state [cf. Fig. 1(d)]. This
means that in the flow pattern, the transport coefficient λ2 will
increase right-winding symmetry over the m = 2 azimuthal
component when the left-winding solution is taken as the
initial solution. That is, in the absence of λ2, the left-winding
symmetry remains in the transverse magnetic field, but due to
the influence of the finite transport coefficient λ2, azimuthal
mode-2 can have stronger left- or right-winding characteristics.
In addition, when taking a right-winding solution as the initial
state [Fig. 1(e)], the flow pattern over azimuthal mode-2 is also
modified in the same way. This is a qualitative characteristic
of the flow modification in the transverse magnetic field with a
large transport coefficient. Here, all flow patterns are stationary
without any rotation.

Figure 6 shows how the variation of max (�2η) and
max[�2η(m = 2)] for the left-winding solution changes with
λ2. All curves in Fig. 6 are linearly scaled with λ2 starting at
zero. So, for the modification of the basic state in the transverse
magnetic field, the transport coefficient or elongational flow
linearly influences the m = 2 azimuthal symmetry.
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FIG. 6. Variation of max(�2η) and max[�2η(m = 2)] for LW vs
λ2 at Re = 60 and sx = 0.6 (cf. Fig. 5). Lines are linear fits.
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IV. SUPERCRITICAL SOLUTIONS—FLOW
INSTABILITIES

A. Bifurcation thresholds

Many numerical and experimental works on ferrofluids
show a stabilizing effect of the magnetic field on the basic state
by shifting bifurcation thresholds of supercritical flow states
in control parameters [7,18,20–23]. This effect is also satisfied
in periodic and rigid boundary conditions, as is supposed in
this paper. While an axial magnetic field does not change
the flow, a transverse magnetic field breaks axisymmetry and
leads to several nonlinear effects because it “modulates” the
flow structures found in the absence of a magnetic field or
in the presence of an axisymmetric field. For instance, the
supercritical flow of a wavy Taylor vortex flow (wTVF) can be
generated by a Taylor vortex flow (TVF) under the influence of
a transverse magnetic field [7,20,21]. This new flow structure
differs qualitatively from the classical flows found in the
absence of the magnetic field. When a transverse magnetic field
is applied to centrifugal unstable flows, we will investigate the
effect of elongational flow. Note that due to the orientation of
the magnetic field, the bifurcating solutions with sx �= 0 are
modified into the wavy Taylor vortex flow [7,20,21] instead of
a classical Taylor vortex flow with sx = 0 and any sz.

To quantitatively compare our numerical results to experi-
mental findings, we will consider the experimental result [7]
for the ferrofluid in the Taylor-Couette system in the presence
of an axial magnetic field instead of a transverse magnetic field
due to the lack of experimental results in a transverse magnetic
field. Figure 7 presents the onsets of centrifugal unstable flows
(TVF and wTVF) under the influence of a transverse or an
axial magnetic field with λ2. Both short horizontal lines shown
in Fig. 7 indicate the experimental onsets [7] at Rec(sz =
0.233) = 74.68 and Rec(sz = 0.409) = 79.47, respectively,
where Rec stands for the critical value. Comparing these cuts
to our numerical results, we qualitatively find that the value of
λ2 will be about 0.2. This value for a transport coefficient is
also in agreement with further experimental measurement [9].

0 0.2 0.4 0.6 0.8
λ2

72

74

76

78

80

Re

sx=0.233
sx=0.409
sz=0.233
sz=0.409

FIG. 7. (Color online) For different field strengths sx , variation of
the onsets of centrifugal unstable flows (TVF for sx = 0 and wTVF)
for Re vs λ2. Lines are linear fits. Points are just to guide the eyes; the
numerical calculations are done for a larger number of points. Both
short horizontal lines indicate the experimentally obtained onsets [7]
[Rec(sz = 0.233) = 74.68 and Rec(sz = 0.409) = 79.47].

In addition, Fig. 7 indicates that the shift in the bifurcation
threshold under the axial magnetic field is larger than that of
the transverse magnetic field.

Considering the effect of elongational flow, the critical
bifurcating point of primary centrifugal instability will be
shifted. By increasing λ2, the critical point for the onset of
centrifugal instability is moved to lower Re. Comparing the
situation without having elongational flow, the flow below the
centrifugal instability becomes less stabilized in the magnetic
field. Therefore, by increasing either a transverse sx or an axial
sz field strength, a similar situation can be found qualitatively.
This means that here the additional term counteracts the
general stabilization in any magnetic field which remains
untouched. As is pointed out after the discussion in Sec. III,
the basic flow is either a left-winding or a right-winding
solution. However, the general bifurcation behavior of the
flow, other than centrifugal instability, remains unaffected as
a supercritical Hopf bifurcation.

We remark that (i) when applying a magnetic field into a
basic state, a general stabilization behavior remains untouched
and flow modification depends linearly on λ2, (ii) due to λ2, the
axial wave number k corresponding to the used bulk length can
be enforced or damped by the flow modifications, and (iii) both
the Niklas approximation theory and the properties of the used
ferrofluid [9] may play a significant role in stabilizing the basic
state.

B. Wave-number selection

We will consider a classical Taylor vortex flow as the initial
flow state, with n = 22 vortices corresponding to an axial wave
number k = 3.41 in the bulk, which can be seen in the left
border in Fig. 8. By increasing the magnetic-field strength, sx ,
the number of vortices is reduced, which leads to an increase in
the wavelength. Therefore, the axial wave number k in the bulk
can be reduced. Note that, as shown in Fig. 8, the wavylike
modulation is not visible. The exact field strength sx for vortex
elimination or the number of destroyed vortices depends on λ2.

In the case in which λ2 = 0 and sx = 0, the flow has 22
vortices with an axial wave number k = 3.41. Until the param-
eter sx approximately reaches the value 0.7, the flow remains
stable, but the number of vortices in the flow can be reduced
to n = 20 with k = 3.04. By increasing the number sx to 0.85,
the number of vortices can be more reduced to n = 16 with
k = 2.58. However, before reaching the boundary threshold
(sx ≈ 0.9), there is no change in the number of vortices.

When λ2 = 0.2, the behavior of the vortex state is similar
to the case neglecting elongational flow effects (λ = 0) and it
remains stable before the parameter sx reaches 0.75. But the
number of vortices is also reduced to n = 20 with k = 3.04.
Until the parameter sx increases the boundary threshold
(sx ≈ 0.95), the number of vortices remains unchanged. In
the case in which λ2 � 0.7, the solution is not affected by the
magnetic-field strength. There is a flow with n = 22 vortices
corresponding to an axial wave number k = 3.41 in the bulk.
There is an interesting phenomenon that one or two vortex pairs
can be eliminated. This can be seen in the experimental result
[7], but there is no physical explanation so far. We also find a
similar reduction scenario for pure axial magnetic fields. This
can correspond to the strength of λ2 with a larger reduction.
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(a) λ2 = 0

(b) λ2 = 0.2

FIG. 8. (Color online) Contours of the radial velocity component
u at midgap with variation of field strength sx at Re = 88.35 and λ2 as
indicated. The initial state at the left border in each plot is a classical
Taylor vortex flow with n = 22 vortices corresponding to an axial
wave number k = 3.41 in the bulk. Note that for sx �= 0, only wavylike
modified flow states exist. Red (yellow) [dark gray (light gray)] cor-
responds to positive (negative) values. The max (min) level is ±9.98.

C. Flow pattern modifications on supercritical flow due to λ2

In this section, the effect of elongational flow on the struc-
ture of supercritical flow will be investigated. Regarding the
effect of elongational flow with a finite quantity λ2 on the basic
state, we already showed that the flow is linearly modified
and the shape of the flow patterns can be changed in the same
way when the magnetic field is applied. Therefore, the tran-
sport coefficient λ2 can be aligned or counteracted with the
flow modification of the magnetic field. This implies that the
elongational flow will enhance the effect of the magnetic field.

Now, we will investigate the flow modifications of
centrifugal unstable flows under the influence of elongational
flow (λ2 �= 0). For a fixed field strength sx = 0.1 and several

(a) λ2 = 0.1 (b) 0.4 (c) 0.8

FIG. 9. (Color online) Isosurfaces of �2η = η(λ2 �= 0) −
η(λ2 = 0) for flow at Re = 100, sx = 0.1, and λ2 as indicated. The top
row is of the full solution [isolevel shown at (a) �2η = ±0.003, (b)
±0.007, and (c) ±0.015] and the bottom row is of the m = 2 contri-
butions [isolevel shown at �2η (a) ±2 × 10−4, (b) ±2.5 × 10−4, and
(c) ±0.001].

finite λ2, Fig. 9 shows the isosurfaces for �2η and �2η(m = 2)
as the effect of elongational flow on supercritical flow. A
comparison of the isosurfaces in Figs. 5 and 9 suggests that
the effect of finite λ2 is almost the same, but the modification
within the bulk is much different due to the fact that visible
isosurfaces over the whole bulk length are much stronger.
Figure 10 shows again a linear scaling with λ2 starting at
zero (cf. Fig. 6). However, values of max[�2η(m = 2)]
are significantly larger. This is due to the already existing
strong flow pattern in the interior when λ2 = 0. Again, the
mode-2 symmetries are conserved and all flows are stationary
nonrotating solutions.

In the case of a stronger field strength, as shown in Fig. 11,
there is an opposite helical contribution in the azimuthal
mode-2, which is significantly enforced by the influence of
λ2, compared with Fig. 3 for the LW basic state. In addition, a
wavylike modulation of the vortices in the azimuthal direction
can be observed that results from the transverse field. All
vortices become tipped out of its horizontal plane.

Under the influence of elongational flow on basic state and
supercritical unstable flows, the maximal vorticity max(�2η)
varies linearly, but the maximal vorticity in the azimuthal
mode-2, max[�2η(m = 2)], is significantly smaller, as shown
in Fig. 12.

From Figs. 9 and 11, the vortex tipping is obviously
observed. Both cases illustrate that the Taylor vortices are
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FIG. 10. Variation of max(�2η) and max[�2η(m = 2)] vs λ2 for
supercritical flow at Re = 100 and sx = 0.1. Lines are linear fits.

tilted downward (upward) when the magnetic field approaches
(leaves) the annulus, respectively. It directly comes from the
combination of the inner cylinder rotation and the transverse
magnetic field, as discussed in Sec. II.

D. Radial gradients of angular momentum balance

In this section, we will consider the case in which the
outer cylinder is nonstationary. In particular, for co- and
counterrotating outer cylinders, their rotation rates ωr2d/ν

are 40 and −40, respectively. To measure the effect of elon-
gational flow, we will consider the radial gradient of angular
momentum, G = ∂(rv)/∂r . For a quantitative comparison of
various control parameters, we will use the reduced quantity,
�G(r) = G(r,sx,λ2)/G(r,sx = 0) − 1.

In Fig. 13, the variations of basic states in the co- and
counterrotation cases are shown as �G(r) versus r for different
field strengths sx and λ2. For λ2 = 0, �G(r) is almost zero
for any field strength sx �= 0. Therefore, we did not show it
in Fig. 13, but for λ2 �= 0, there is a measurable difference in
�G(r). By increasing λ2, Figs. 13(a)–13(d) show the amplitude
modification of �G(r) over the gap width. In the case of
corotating cylinders, �G increases near the cylinder walls and
decreases in the middle of the bulk for λ2 �= 0. But, in the case
of counterrotating cylinders, �G is maximized at the interior
and reduced near the walls for λ2 �= 0. In general, the flow
modification becomes enlarged by increasing λ2 and also is
stronger in the case of counterrotating cylinders. In addition,
we find that all curves shown in Fig. 13 have qualitatively the
same behavior even for different field strengths sx .

Mathematically, the effect of elongational flow can be
explained by a direct coupling of λ2 and nonlinear terms in the
equations, which can increase the magnetic field parameter sx .
As a physical interpretation for the effect of elongational flow,
when increasing the magnetic field strength, particle-particle

(a) λ2 = 0.1 (b) 0.4 (c) 0.8

FIG. 11. (Color online) Isosurfaces of �2η = η(λ2 �= 0) −
η(λ2 = 0) for supercritical flow at Re = 100, sx = 0.6, and λ2 as
indicated. The top row is of the full solution [isolevel shown at
(a) �2η = ±0.1, (b) ±0.4, and (c) ±0.7] and the bottom row
is of the m = 2 contributions [isolevel shown at �2η (a) ±0.01,
(b) ±0.04, and (c) ±0.07].

interaction will be increased due to the influence of the finite
volume particles. This means that the chain-building process
is more significant [6,15], and so the strength of elongational
flow increases.
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FIG. 12. Variation of max(�2η) and max[�2η(m = 2)] vs λ2 for
flow at Re = 100 and sx = 0.6. Lines are linear fits.
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FIG. 13. (Color online) Influence of λ2 on the radial gradient of
angular momentum G of the basic state for a system with outer
cylinder corotation ωr2d/ν = 40 (a) and (c) and counterrotation
ωr2d/ν = −40 (b) and (d) for Re = 40. Variation of �G(r) =
G(r,sx,λ2)/G(r,sx = 0) − 1 vs r for sx and λ2 as indicated. In (d),
the curve for λ2 = 2 is missed due to the shift of the onset, i.e., the
supercritical flow already existed.

Note that, as shown in Fig. 13, although the modification
�G(r) of flow states in the presence of λ2 is small and finite,
the shape of the flow is almost unchanged for any λ2 and is
only enforced in a linear manner (cf. Sec. III B).

V. CONCLUSION AND DISCUSSION

To explore the effect of elongational flow on ferrofluid in
the presence of the transverse or the axial magnetic field,
we consider the so-called transport coefficient λ2 on the
Taylor-Couette system with stationary, nonrotating, rigid end
walls and an outer cylinder mostly at rest. To numerically study
the effect of elongational flow, the nondimensional governing
equations including the transport coefficient are presented.
Elongational flow can be incorporated by the symmetric part
of the velocity gradient field tensor in the nondimensional
governing equations, which can be scaled by the transport
coefficient λ2. Mathematically, the transport coefficient λ2 can
be described in the symmetric part of the velocity gradient
of the ferrohydrodynamic equations of motion. To do direct
numerical simulations, we assume a stationary magnetization
near equilibrium and a sufficiently small relaxation time
including the λ2 term in the magnetization equations. It is
a similar approach to that shown in the model of Niklas
et al. [18,19,21].

In the case of λ2 = 0, the classical system’s symmetries are
broken for a finite transverse magnetic field Hx �= 0, and so the
flow is inherently three-dimensional. Actually, the resulting
flow has a helical shape that is either left-winding or right-
winding in the sense of the azimuthal mode-2. Thus, the flow
remains a stationary state being pinned into position due to the
imposed magnetic field which generates it.

For a finite transport coefficient, i.e., λ2 �= 0 or due to the
effect of elongational flow, we find that the shape of the flow
pattern is not qualitatively modified and the flow modification
can be linearly enforced by keeping the symmetry in the sense
of the azimuthal mode-2. Additionally, it holds for both the ba-
sic flow and the primary instability—a supercritical centrifugal
unstable flow. We also find the well-known stabilization effect
for any magnetic field, which is known because the onset of
centrifugal instability is relatively shifted in the bifurcation
curve [7,20,21,23]. Depending on various system parameters
(for instance, the axial wave number k and the cylinder rotation
rate), the stabilization effect can be either stronger or weaker.
Thus, under the influence of a magnetic field, elongational flow
(λ2 �= 0) can enforce or dampen the flow stabilization, which
remains untouched. In general, we can say that elongational
flow enhances the effect of magnetic fields. Physically, we
may say that particle-particle interaction and the chain formed
by the flow of the fluid are more significantly influenced
due to the increasing magnetic-field strength. This implies
that modifications of the spatiotemporal structure can happen,
especially for the basic state and the centrifugal unstable flow.

For a qualitative and quantitative comparison between our
numerical results and experimental findings, we consider the
bifurcation thresholds of centrifugal unstable flow under the
influence of the axial magnetic field [7], and we find very
good agreement with the value of the transport coefficient
λ2, which is about 0.2. This value is observed in Ref. [15].
As another measurement for the effect of λ2, we consider
the radial gradient of angular momentum G. For different
field strengths sx , G is changed, but it is qualitatively similar
by increasing λ2. In the case of corotating inner and outer
cylinders, the radial gradient of angular momentum G is
minimized in the middle of the bulk, but it is increased near the
cylinder walls due to the effect of elongational flow. However,
in the case of counterrotating inner and outer cylinders, the
reverse phenomenon is true for G. In general, for strong
elongational flow, this phenomenon is stronger, especially for
counterrotating cylinders.

ACKNOWLEDGMENTS

This work was supported by WCU (World Class Univer-
sity) program through the Korea Science and Engineering
Foundation funded by the Ministry of Education, Science and
Technology (Grant No. R32-2009-580 000-20021-0).

[1] R. E. Rosensweig, Ferrohydrodynamics (Cambridge University
Press, Cambridge, 1985).

[2] J. E. Hart, Dyn. Atmos. Oceans 41, 121 (2006).
[3] J. E. Hart and S. Kittelman, Dyn. Atmos. Oceans 41, 139 (2006).

[4] M. I. Shliomis, Sov. Phys. JETP 34, 1291 (1972).
[5] J. P. McTague, J. Chem. Phys. 51, 133 (1969).
[6] S. Odenbach and H. W. Müller, J. Magn. Magn. Mater. 289, 242

(2005).

013003-9

http://dx.doi.org/10.1016/j.dynatmoce.2006.03.001
http://dx.doi.org/10.1016/j.dynatmoce.2006.03.002
http://dx.doi.org/10.1063/1.1671697
http://dx.doi.org/10.1016/j.jmmm.2004.11.069
http://dx.doi.org/10.1016/j.jmmm.2004.11.069


S. ALTMEYER, YOUNGHAE DO, AND J. M. LOPEZ PHYSICAL REVIEW E 88, 013003 (2013)

[7] M. Reindl and S. Odenbach, Phys. Fluids 23, 093102 (2011).
[8] S. Mahle, P. Ilg, and M. Liu, Phys. Rev. E 77, 016305 (2008).
[9] H. W. Müller and M. Liu, Phys. Rev. E 64, 061405 (2001).

[10] P. J. W. Debye, Polar Molecules (Dover, New York, 1929).
[11] M. A. Martsenyuk, Y. L. Raikher, and M. I. Shliomis, Sov. Phys.

JETP 38, 413 (1974).
[12] The Physics of Liquid Crystals, edited by G. P. Gilles de and

J. Prost (Clarendon, Oxford, 1983).
[13] F. Gazeau, B. M. Heegaard, J. C. Bacri, A. Cebers, and

R. Perzynski, Europhys. Lett. 35, 609 (1996).
[14] F. Gazeau, C. Baravian, J. C. Bacri, R. Perzynski, and M. I.

Shliomis, Phys. Rev. E 56, 614 (1997).
[15] S. Odenbach and H. W. Müller, Phys. Rev. Lett. 89, 037202

(2002).
[16] P. Langevin, Ann. Chem. Phys. 5, 70 (1905).

[17] J. Embs, H. W. Müller, C. Wagner, K. Knorr, and M. Lücke,
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