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Elongational flow effects on the vortex growth out of Couette flow in ferrofluids
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The growth behavior of stationary axisymmetric vortices and of oscillatory, nonaxisymmetric spiral vortices
in Taylor-Couette flow of a ferrofluid in between differentially rotating cylinders is analyzed using a numerical
linear stability analysis. The investigation is done as a function of the inner and outer cylinder’s rotation rates,
the axial wave number of the vortex flows, and the magnitude of an applied homogeneous axial magnetic field.
In particular, the consequences of incorporating elongational flow effects in the magnetization balance equation
on the marginal control parameters that separate growth from decay behavior are determined. That is done for
several values of the transport coefficient that measures the strength of these effects.
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I. INTRODUCTION

Ferrofluids [1] as colloidal suspensions of nanosized mag-
netic particles continue to attract research activities. Some of
the reasons are that magnetic fields influence their macroscopic
flow behavior and vice versa [1–5] and their rheology and
transport properties can be changed by a magnetic field
[6–9]. Also, the question of how the flow of a ferrofluid in
the Taylor-Couette system is influenced by magnetic fields
has been the subject of several theoretical and experimental
analyses [10–17], most of them being focused on the relaxation
phenomena of the magnetic particles.

It is fair to say that many of these investigations were
stimulated by the seminal work of Shliomis and co-workers
[9,18,19]. Therein, an expression for the angular velocity of the
magnetic particles plays a central role. Because of magnetic
torques and dissipation, this velocity differs from the local
macroscopic angular velocity � = 1

2 (∇ × u) of the ferrofluid
that flows with the macroscopic hydrodynamic velocity field
u. The resulting equation for the magnetization field M of a
ferrofluid flowing with velocity u reduces to a Debye relaxation
form [20] if nonlinear terms in M are ignored.

Thus many authors used in some way a description of
ferrofluids that is based on the relaxation of magnetization,
which assumes that a ferrofluid can be treated as a system of
noninteracting, spherical, magnetically hard particles. How-
ever, rheological investigations suggest that ferrofluids can
exhibit a significant amount of interparticle interactions that
may change their properties. Thus alternatives and extensions
of the classical approach [9,18,19] have been sought.

One of these alternatives is the hydrodynamic approach of
Müller and Liu [21]. Treating the ferrofluid as a magnetizable
continuum, they derived balance equations for the relevant
densities and for the spatiotemporal behavior of M on the
basis of the principles of irreversible thermodynamics. Taking
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the densities that are conserved in the absence of dissipation,
the magnetization, and the electromagnetic field as variables
in the thermodynamic energy density, they deduce equations
for either the energy or the momentum flux and the entropy
production. These equations, together with material-dependent
parameters such as susceptibilities and several transport
coefficients, provide a full description of the dynamics of
ferrofluids. In particular, they find in this way an equation
for the time derivative of M.

It contains besides relaxational and flow induced changes
[of the well known forms (u · ∇)M and � × M, respectively]
also an additional contribution of the form λ2V · M. Here λ2 is
a material-dependent transport coefficient and V = 1

2 [∇ : u +
(∇ : u)T ] is the symmetric part of the velocity gradient field
tensor. Onsager symmetry relations then require [21] that
additional forces involving λ2 appear in the off-equilibrium
momentum balance of the ferrofluid.

The material-dependent coefficient λ2 has to be measured
for each ferrofluid separately. From the analysis of an experi-
ment measuring the magnetovortical resonance Müller and Liu
inferred a value of λ2 = 2.54 [21]. Furthermore, Odenbach and
Müller [22] investigated experimentally the nonequilibrium
magnetization of a ferrofluid in the Taylor-Couette system
subject to a homogeneous transverse magnetic field. They
explored the dependence of M on V by varying V in an
elongational flow between counterrotating cylinders such that
� remained constant. Their results reveal that the symmetric
velocity gradient field V can affect the magnetization of
a ferrofluid. The authors argued that the magnetization of
spherical particles would not be affected by the elongational
flow, but that chainlike agglomerates in the fluid that form as
a result of interparticle interactions would alter the magneti-
zation dynamics via the term λ2V · M. Thus the interparticle
interaction of fluids would have an impact on the value of λ2.
For the ferrofluids that they used for their experiments they
estimated values of 0 � λ2 � 0.88.

In this paper we investigate the linear growth behavior
of stationary axisymmetric and nonaxisymmetric oscillatory
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vortex flow of a ferrofluid in the Taylor-Couette system that
is placed in homogeneous axial magnetic fields Hext = Hextez.
Investigations are done as a function of Hext, the inner and
outer cylinder’s rotation rates, and the axial wave numbers
k of the vortex flows. The marginal parameters that separate
growth from decay, i.e., the parameter values for the onset
of vortex flow out of the basic homogeneous state of circular
Couette flow (CCF), depend sensitively on the presence of any
elongational effect, i.e., on the value of the transport coefficient
λ2. Thus we have performed for several values of λ2 a rather
complete linear stability analysis of CCF against the growth
of axisymmetry, stationary Taylor vortices [Taylor vortex flow
(TVF)] as well as nonaxisymmetric oscillatory spiral vortices
[spiral vortex flow (SPI)]. It provides results that can easily
be tested by experiments and might contribute to the question
of proper magnetization equations and the relevance of the
λ2 term.

II. SYSTEM AND EQUATIONS

A. System

We present numerical results for the growth of vortex
perturbations in axially unbounded Taylor-Couette systems
with corotating and counterrotating cylinders. The gap width
between the outer cylinder of radius r2 and the inner one of
radius r1 is d = r2 − r1. With infinitely long cylinders the only
relevant parameter characterizing the geometry is the radius
ratio η = r1/r2, which is held fixed throughout this paper to
η = 0.5.

The fluid in the annulus is taken to be isothermal and
incompressible with kinematic viscosity ν. To characterize
the driving of the system, we use the Reynolds numbers

Re1 = r1�1d/ν, Re2 = r2�2d/ν. (2.1)

They just give the reduced azimuthal velocities of the fluid
at the inner and outer cylinders, respectively, where �1 and
�2 are the respective angular velocities of the cylinders. The
inner one is always rotating counterclockwise, so �1 and Re1

are positive. Further, an external homogeneous axial magnetic
field Hext = Hextez is applied.

B. Ferrofluid equations

Here we briefly recapitulate aspects of the more standard
form of the ferrofluid equations. Then, in Sec. II C, we show
how the latter are modified by the elongational flow terms
appearing in the approach of Müller and Liu [21].

The dynamics of the flow of an incompressible ferrofluid
is governed by augmented incompressible Navier-Stokes
equations. They include magnetic terms that describe the effect
of the internal magnetic field H and the magnetization M on
the balance of momentum density of the ferrofluid resulting in
the ferrohydrodynamic equations of motion

(∂t + u · ∇)u = ∇2u − ∇p + 2(M · ∇)H + ∇ × (M × H),

∇ · u = 0. (2.2)

Here we scale lengths by the gap width d, time by the radial
momentum diffusion time τD = d2/ν, velocities with ν/d, and
the pressure with ρν2/d2. The pressure gradient is meant here
to contain other terms that can be written as the gradient of

a scalar. The magnetic field H and the magnetization M are
both reduced by

√
2ρ/μ0 ν/d, with μ0 being the permeability

and ρ denoting the mass density of the ferrofluid. These two
fields are related to each other via the magnetostatic Maxwell
equations

∇ × H = 0, ∇ · (H + M) = 0. (2.3)

These equations yield also the relations

Hout(r = ri) = H(r = ri) + Mr (r = ri)er for i = 1,2

(2.4)

between the internal magnetic field H, the magnetization M,
and the magnetic field Hout outside the ferrofluid, where Mr is
the radial component of the magnetization M.

To solve Eqs. (2.2) and (2.3) one additionally needs an
equation describing the magnetization dynamics. In the simple
Debye approach [20] one considers the relaxation of the
magnetization M towards the equilibrium magnetization

Meq = Meq

H
H = χ (H )H (2.5)

(where Meq and H are the absolute values and χ is the magnetic
susceptibility) with one single relaxation time τ in a frame
rotating with � = 1

2∇ × u,

(∂t + u · ∇)M = − 1

τ
(M − Meq) + � × M. (2.6)

We denote in this paper the combination of Eqs. (2.2) and (2.6)
as model D.

C. Elongational flow effects in the Müller-Liu model

1. Magnetization

In the model of Müller and Liu [21] the magnetization
dynamics of Eq. (2.6) is augmented by including an additional
dependence on the symmetric velocity gradient tensor

V = 1
2 [∇ : u + (∇ : u)T ] (2.7)

with a transport coefficient λ2:

(∂t + u · ∇)M = − 1

τ
(M − Meq) + �× M + λ2V · M. (2.8)

2. Momentum density

Using our notation, i.e., our scalings given in Sec. II, the
equation of [21] for the Cartesian velocity component ui reads

(∂t + u · ∇)ui = ∇2ui − ∇ip

+ 2∇j (HiBj ) − ∇j (Mihj − hiMj )

+ λ2∇j (Mihj + hiMj ) (2.9)

if one ignores higher-order terms that appear in [21] involving
additional transport coefficients λ3 and λ4. Here summation
over the Cartesian index j is implied and the incompressibility
constraint ∇juj = 0 is imposed. Terms that are gradients of
scalars are included in Eq. (2.9) in the pressure gradient ∇ip.
Furthermore, B = H + M and h = Heq − H, with Heq(M)
being the inverse function of Meq(H).

To compare Eq. (2.9) with the momentum balance equation
(2.2) one first notes that

2∇j (HiBj ) = 2(M · ∇)Hi + ∇i(H · H). (2.10)
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Here Maxwell’s equation ∇ · (M + H) = 0 has been used. The
gradient of H · H in Eq. (2.10) can be incorporated into the
pressure gradient of Eq. (2.9). Second, one has

−∇j (Mihj − hiMj ) = [∇ × (M × H)]i (2.11)

since Heq is parallel to M. Thus the Müller-Liu (ML)
momentum balance equation (2.9) agrees with (2.2), except
that the former contains an additional forcing term involving
the coefficient λ2 that is related to the elongational effect in
the magnetization equation (2.8).

For later use we rewrite this additional forcing term in
Eq. (2.9) using the equality

∇j (Mihj + hiMj ) = Mi(∇ · h) + hi(∇ · M)

−[h × (∇ × M)]i + ∇i(h · M). (2.12)

The last contribution in the above equation being the gradient
of h · M can be incorporated into the pressure gradient term.

Thus the ML momentum balance equation (2.9) for an
incompressible ferrofluid can be written in the form

∇ · u = 0, (2.13a)

(∂t + u · ∇)u = ∇2u − ∇p + 2(M · ∇)H + ∇ × (M × H)

+ λ2[M(∇ · h) + h(∇ · M) − h × (∇ × M)],

(2.13b)

which we will use in the following. Note that the additional
forcing of the flow by the λ2 term is linear in the deviation h
of the magnetic field H from the equilibrium field Heq.

In the remainder of this paper we denote the combination
of Eqs. (2.8) and (2.13) as model ML. Furthermore, we would
like to mention that model ML reduces for vanishing transport
coefficient λ2 = 0 to model D.

III. LINEAR STABILITY ANALYSIS
OF CIRCULAR COUETTE FLOW

In this section and the Appendix we present the mathe-
matical tools for the linear stability analysis of the basic CCF
state.

A. Basic state: Circular Couette flow

The velocity field of CCF solves the ferrohydrodynamic
equations of motion (2.2) and (2.13) also when a homogeneous
axial field Hext = Hextez is applied. Then the homogeneous
internal field HCCF and the equilibrium magnetization MCCF,

HCCF = Hext = Heq,

MCCF = Meq(HCCF) = χ (Hext)Hext, (3.1)

fulfill the Maxwell equations (2.3) and the boundary conditions
(2.4). In this case, the magnetic terms in the equations of mo-
tion (2.2) and (2.13) vanish. Note that HCCF = Heq(MCCF) =
Hextez, so hCCF = 0.

Thus the basic CCF velocity field

uCCF = (ACCFr + BCCFr
−1)eϕ (3.2)

solves the ferrohydrodynamic equations of motion (2.2) and
(2.13). The here assumed no-slip boundary conditions

u(r = r1) = Re1eϕ, u(r = r2) = Re2eϕ (3.3)

yield the coefficients ACCF = (Re2 − ηRe1)/(1 + η) and
BCCF = η(Re1 − ηRe2)/(1 + η)(1 − η)2.

In this CCF state, the vorticity and the velocity gradient
tensor read

�CCF = ACCFez, VCCF = −BCCF

r2
(er : eϕ + eϕ : er ). (3.4)

The magnetization equations (2.6) and (2.8) are fulfilled
because MCCF is parallel to ez and �CCF × ez = 0 = VCCF · ez.

B. Linearization around the CCF state

In the following u,p,V,� and δH,δM,δh = h denote
deviations from the CCF state. Then the ferrofluid equations
of model ML read after linearization around the CCF state

0 = ∇ · u, (3.5a)

∂tu = −(uCCF · ∇)u − (u · ∇)uCCF + ∇2u − ∇p

− MCCF(∇ · δM) + ∇ × (δM × HCCF)

+ λ2MCCF(∇ · h), (3.5b)

∂t δM = −(uCCF · ∇)δM − 1

τ
(δM − δMeq) + �CCF × δM

+�× MCCF + λ2(V · MCCF +VCCF · δM). (3.5c)

Here we have used Maxwell’s equations (2.3) to eliminate δH
in favor of δM. Furthermore, we have incorporated terms that
can be written as gradients of a scalar into the pressure gradient
like the ones that appear in the contributions 2(MCCF · ∇)δH =
2∇(MCCF · δH) and ∇ × (MCCF × δH) = −∇(MCCF · δH) −
MCCF(∇ · δM).

Into the linearized ferrofluid equation (3.5c) enters the
equilibrium magnetization function for the perturbed internal
magnetic field HCCF + δH via its deviation from the one
characterizing the CCF state

δMeq = Meq(HCCF + δH) − Meq(HCCF). (3.6)

It enters also into the momentum balance equation (3.5b) via
the last term since ∇ · h = ∇ · (Heq − H) = ∇ · (M − Meq) =
∇ · (δM − δMeq) according to Maxwell’s equations (2.3).
In solving Eqs. (3.5) we have ignored, as in Ref. [16],
the deviation of δMeq relative to the direct magnetization
perturbation δM. We expect also here the contribution of the
former to be small compared to the latter.

The equations (3.5) with δMeq = 0 are presented in the
Appendix using cylindrical coordinates with u = uer + veϕ +
wez and δM = δMrer + δMϕeϕ + δMzez. They are solved
with the ansatz

(u,v,w,p,δMr,δMϕ,δMz)

= eσ t+imϕ+ikz(U,V,W,P,M̂r ,M̂ϕ,M̂z) (3.7)

for vortex perturbations. Here k is the axial wave number of the
vortex mode and m the azimuthal one. The real part γ of the
complex eigenvalue σ = γ + iω gives the temporal growth
rate of the k-m mode and the imaginary part ω its oscilla-
tion frequency. The mode amplitudes U,V,W,P,M̂r ,M̂ϕ,M̂z

depend on the radial coordinate r .
We have solved the ordinary differential equations for the

mode amplitudes with a standard shooting method [23,24] as
described in detail in the Appendix. In this way we determine
at different fixed values of Re2, m, k, Hext, and λ2 the marginal
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values of Re1 and ω for which vortex perturbations show zero
growth, γ = 0. We would like to note that we use in the
remainder of this paper the letter H without a subscript to
represent Hext for the sake of notational simplicity.

IV. RESULTS AND DISCUSSION

In this section we present our results for the λ2 dependence
of the stability boundaries of the CCF state against vortex
perturbations. Since these boundaries are the bifurcation
thresholds for the respective nonlinear vortex states we will
use the terms “stability boundary,” “bifurcation threshold,”
and “onset of vortex flow” interchangeably.

We restrict ourselves in this work to m = 0 Taylor vortices
and spiral vortex perturbations with azimuthal wave number
m = ±1. For the latter also the λ2 dependence of the marginal
spiral frequencies at onset is determined. Note that the axial
magnetic fields considered here do not break the axial mirror
symmetry between left and right handed spiral vortices. So it
suffices to present the results for m = 1 vortex perturbations
(the mirror-symmetric ones for m = −1 spirals are meant to be
included as well). Furthermore, a few test calculations showed
that the results for vortex perturbations with azimuthal wave
number m > 1 are qualitatively similar.

A. Ferrofluid parameters

For our calculations we use typical values of the parameters
[25–28] that characterize the ferrofluid APG933 of FerroTec:
Msat

mat � 450 kA/m, � = 4.1%, ρν = 0.5 Pa s, s = 2 nm, f0 =
109 Hz, and K = 15 kJ/m3. The equilibrium magnetization
Meq(H ) of APG933 is obtained with a polydisperse fit to
experimental data that is described in detail in Ref. [16]. For the
single magnetic relaxation time τ we use a value of 0.5 × 10−3

s, which is comparable to the averaged effective relaxation time
as well as experimental results [29,30].

We consider in this work the range 0 � λ2 � 0.8 for the
coefficient λ2, thereby orienting ourselves at the experimental
results of Ref. [22]. Note, however, that the transport coef-
ficient can be expected to depend on the properties of the
particular ferrofluid [21].

For better comparison with experimental results, in this
section we use the physical units kA/m for the magnetic field.

B. Stability boundaries in the Re2-Re1 plane

We first discuss here how the parameter λ2 influences the
growth of m = 0 and m = 1 vortex perturbations out of the
CCF state in the Re2-Re1 plane of Reynolds numbers. To that
end we determine the stability of the CCF state against these
perturbations.

Figure 1 presents the bifurcation thresholds for axisym-
metric m = 0 and nonaxisymmetric m = 1 vortex flow in a
magnetic field H = 67.7 kA/m resulting from model ML. As
a representative axial wave number we have chosen in Fig. 1
k = 2.8274 as in experiments [31]. Figure 1(c) shows the spiral
frequencies at the bifurcation thresholds of Fig. 1(b) that are
to be discussed later on in Sec. IV D.

The lowest thick solid curve in each plot refers to the case
without any magnetic field H = 0. Thus the CCF basic state is
stabilized against the two types of vortex perturbations in the
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FIG. 1. (Color online) Stability thresholds of the CCF state
against growth of (a) m = 0 TVF and (b) m = 1 SPI in the Re2-Re1

plane of control parameters. (c) SPI frequencies at the bifurcation
thresholds of (b). Thin solid and dashed lines with symbols show
the results of model ML for λ2 = 0 and λ2 = 0.8 for a magnetic
field H = 67.7 kA/m. The lowest thick curve refers in each figure
to the absence of a magnetic field H = 0. The axial wave number is
k = 2.8274.

magnetic field. This behavior has been seen already [15,16,31]
for λ2 = 0. Here we want to remind the reader that for λ2 = 0
model ML reduces to model D.

Taking into account λ2, the basic state becomes destabilized
in comparison with the case λ2 = 0: The bifurcation thresholds
of both m = 0 and m = 1 vortices are shifted again to lower
values of Re1. Thus, for the axial wave number of k = 2.8274
used in Fig. 1, the λ2 term reduces the general stabilization
effect caused by a magnetic field. Such a λ2-induced relative
destabilization is predicted by model ML in the whole range
of Re2 shown in Fig. 1. However, the changes of the stability
boundaries that are induced by λ2 are quite weak, in particular
for corotating cylinders.

Comparing Figs. 1(a) and 1(b), one observes that the λ2 = 0
bifurcation thresholds for nonaxisymmetric m = 1 vortex flow
are modified more by the magnetic field than those for m = 0
Taylor vortices. The upward shift towards larger values of Re1

of the former is larger than for the latter. This effect has been
found to show up also in transversal and oblique magnetic
fields [15,31].

Also the magnitude of the modifications caused by a finite
λ2 is larger for m = 1 than for m = 0 perturbations. Thus
the field-induced stabilization against the growth of m = 1
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FIG. 2. (Color online) Influence of the elongational flow effect on
marginal vortex perturbations with a larger wave number k = 3.4558.
Shown are (a) bifurcation thresholds of m = 0 TVF and m = 1 SPI
and (b) the spiral frequencies at threshold versus Re2. Solid and
dashed lines refer to λ2 = 0 and 0.8, respectively. The magnetic field
is H = 135.4 kA/m.

vortices gets for k = 2.8274 reduced more by the adverse
effect of λ2, but not deleted.

We would like to stress that, in contrast to the stabilization
of the CCF state by a magnetic field, the λ2-induced
modifications of the linear growth of vortices do depend
significantly on their axial wave number, as will be shown in
more detail in Sec. IV E.

Here we first discuss the situation for a larger wave number,
taking k = 3.4558 as a representative example. This situation
is more complex than the one shown in Fig. 1 for vortices
with the smaller wave number k = 2.8274. Incorporating the
flow elongation for the latter by λ2 increases their growth rate
and thus shifts the stability boundaries in Fig. 1 downward
for all Re2 shown there. Figure 2, in contrast, shows that
vortex perturbations with the larger wave number k = 3.4558
experience for finite λ2 an increased growth for strong negative
Re2, but a reduced growth in the corotating case: In Fig. 2(a)
the bifurcation thresholds of TVF (m = 0) and in particular of
SPI (m = 1) are shifted downward for strongly counterrotating
cylinders, but slightly upward for corotating ones when the
elongational term is switched on.

C. Stability boundaries: H dependence

Figure 3 shows how the bifurcation thresholds of model
ML for m = 0 TVF and for m = 1 SPI vary with the magnetic
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FIG. 3. (Color online) Variation of the m = 0 and m = 1 bifurca-
tion thresholds with magnetic field H resulting from model ML for
λ2 = 0 (lines with circles) and λ2 = 0.8 (lines with squares). The top
row refers to Re2 = 0 and the bottom one to Re2 = −100. The wave
numbers are, from left to right, k = 2.8274, 3.1415, and 3.4558.

field and how this variation is influenced by incorporating
the elongational flow effect. The top row of figures refers
to Re2 = 0 and the bottom one to Re2 = −100. The wave
numbers are k = 2.8274, 3.1415, and 3.4558 from left to right.

Except for small H , all thresholds increase linearly with
H with slopes ∂Re1,stab(H )/∂H that vary slightly with λ2

and with wave number k. For Re2 = 0 in Figs. 3(a1)–3(a3)
the slopes of the m = 0 and m = 1 curves are comparable;
however, they differ significantly for counterrotating cylinders,
e.g., Re2 = −100 in Figs. 3(b1)–3(b3). Consequently, there
are intersections of the m = 0 and m = 1 stability boundaries,
an effect that has been seen also in experiments and also in full
nonlinear simulations [15] with λ2 = 0.

Figure 3 shows that the modifications of the H dependence
of the bifurcation thresholds due to λ2 tend to increase when the
outer cylinder Reynolds number Re2 becomes more negative,
i.e., when the strain increases. Furthermore, they depend
on the axial wave number k (see also Sec. IV E). Here, in
Fig. 3 one observes that for fixed k the modifications due
to λ2 increase with increasing magnetic field while remaining
qualitatively the same. The general tendency to be seen in Fig. 3
is that the elongational effect shifts the stability boundaries
downward in Re1 by amounts that depend on k and Re2.
Thus the stabilization by the magnetic field being significantly
larger overcompensates for the small adverse destabilizing
elongational effect.

D. Spiral frequencies

So far we have discussed in Secs. IV B and IV C the
influence of the elongational term on the growth rates of
m = 0 and m = 1 vortex perturbations, i.e., on the real part
of the eigenvalue of these solutions via the location of the
corresponding bifurcation thresholds in parameter space. Here
we discuss our results on the imaginary part of the marginal
eigenvalue at the bifurcation threshold of m = 1 vortex flow,
i.e., on the marginal spiral frequency ω.
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FIG. 4. (Color online) Same as in Fig. 3, but for frequencies ω of
m = 1 spirals at the bifurcation thresholds.

To that end we present in Fig. 4 the SPI frequencies at the
m = 1 bifurcation thresholds of Fig. 3 versus magnetic field
H . The selected values of λ2, k, and Re2 and the presentation
mode are the same as in Fig. 3.

First, as the main effect one has to note that the SPI
frequencies increase with the field H simply because the onset
Reynolds numbers Re1 in Fig. 3 increase with H . For the
same reason the frequencies are larger for Re = −100 than for
Re = 0. A secondary and minor effect comes from switching
on the elongational term. It typically shifts the onset downward
to slightly smaller values of Re1 and thus the SPI frequency ω

shows a similar, small, λ2-induced reduction. The magnitude
of the latter depends on H , k, and Re2. Note, however, that
the elongational effect causes for the larger wave number in
Fig. 4 at Re = 0 a slight increase of ω, in particular for larger
H . Strong counterrotating cylinders, in contrast, reduce in
general the frequency for finite λ2 as shown in the bottom row
of Fig. 4.

The modifications of the spiral frequencies due to finite λ2

are most pronounced for the lowest wave number k = 2.8274
in counterrotating cylinders [see Fig. 4(b1)]. In all cases,
switching on the elongational term does not cause dramatic
changes in the field dependence of the SPI frequencies. All
in all, the behavior of the imaginary part of the marginal
eigenvalue with increasing λ2 is quite similar to that of its
real part.

E. Wave number dependence of stability boundaries
and spiral frequencies

So far we have investigated the influence of the elongational
effect on the eigenvalues for vortex growth out of the CCF state
for a few fixed axial wave numbers k. Here we discuss in more
detail how the λ2 term changes the wave number dependence
of the stability boundaries and of the spiral frequencies. This
is of interest also with respect to experiments since the wave
numbers of some vortex structures show a strong variation
when changing the magnetic field [31,32]. Furthermore, also
hysteresis [31] between vortex flows with different k has
been observed when increasing and decreasing the Reynolds
numbers.
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FIG. 5. (Color online) The left column shows the stability
boundaries of the CCF state against the growth of m = 0 and m = 1
vortex flow in the k-Re1 plane for λ2 = 0 and 0.8. The right column
shows the marginal spiral frequencies at the m = 1 thresholds that
are displayed in the left column. The top row refers to Re2 = 0 and
the bottom one to Re2 = −100. The magnetic field is H = 80 kA/m.

The left column of Fig. 5 shows how the bifurcation
thresholds for m = 0 and m = 1 vortex flow in the k-Re1

plane change when the elongational term is incorporated in
the ferrofluid equations (2.8) and (2.13) of model ML. The
right column of Fig. 5 shows the wave number dependence
of the corresponding marginal spiral frequencies at the onsets
that are are displayed in the left column. The top row refers
to Re2 = 0 and the bottom one to Re2 = −100. The magnetic
field is fixed at H = 80 kA/m.

One sees that, relative to the λ2 = 0 results, the thresholds
for the case of λ2 = 0.8 (lines with squares) are shifted
downward in Re1 at smaller k and upward at larger wave
numbers. Thus, in a fixed magnetic field the elongational
effect destabilizes (stabilizes) the CCF state against growth
of vortices when their wave numbers are small (large). This
qualitative observation holds for all thresholds that are shown
in Fig. 5. Thus model ML predicts a crossing of the pair of
respective stability curves for λ2 = 0 and 0.8 at a specific value
k× of the wave number: Increasing λ2 destabilizes the basic
CCF state against perturbations with small wave numbers,
while stabilization occurs for larger k. This holds for m = 0
and m = 1 perturbations.

For TVF [31,32] the typical experimentally observed wave
numbers lie around k ≈ 3, e.g., k = 2.51, 2.83, and 3.14. For
all these wave numbers, model ML predicts the basic state
to become destabilized by a finite λ2 compared to the case
without it.

In Fig. 5(a1) one sees that the crossover values of k× for
m = 0 and m = 1 perturbations are almost identical when the
outer Reynolds number is zero. Additional simulations for
various different parameters have shown that this coincidence
of k× for m = 0 and m = 1 vortices is special for Re2 ≈ 0.

Also the spiral frequencies in the right column of Fig. 5
increase with increasing λ2 when k is large, but decrease
for smaller k as a result of switching on the elongational
effect. However, the crossing wave number that separates the
ω increase from the ω decrease is slightly smaller than the
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crossing location k× of the m = 1 stability thresholds. An
analysis of experimental vortex flows with wave numbers that
are larger and smaller than k× and the comparison with the
predictions of the model for the bifurcation thresholds and
spiral frequencies could help to show whether the elongational
effect is at work and how large λ2 might be.

A reasonable looking kind of hand waving explanation
for the wave number dependence of the λ2 effect on the
growth rates of vortex flow might be given if one follows a
speculation [22] on the physical origin of the elongational
effect. In Ref. [22] Odenbach and Müller argue that the
microscopic origin of a finite λ2 might be attributed to the
finite asphericity of the colloids, i.e., the presence of (short)
particle chains in the ferrofluid. These chains could more
easily remain aligned in the direction of the magnetic field
in vortex flows with small k than in a flow with large axial
wave number and large azimuthal vorticity. Thus, since the
magnetorotational dissipation in the latter flow is larger than
in the former one it requires larger centrifugal forces, i.e.,
larger values of Re1, to drive the growth of a large k flow. The
weakness of this argumentation is, however, that one would
expect in the presence of chains also for small k vortices an
increase of the threshold Reynolds number. In contrast, model
ML predicts that incorporating the elongational term in the
magnetization balance changes the momentum balance of the
vortex flow such that the growth of vortices is enhanced for
k < k× and reduced for k > k× relative to the reference case
of λ2 = 0.

V. CONCLUSION

The consequences of incorporating elongational flow ef-
fects in the magnetization balance of ferrofluids on the growth
behavior of vortex flow in the Taylor-Couette system were
investigated. Orienting ourselves at experimental estimations
for the magnitude of the elongational effect [22], we explored
values of the transport coefficient λ2 that measures its strength
between 0 and 0.8. Model ML was used to do a linear
analysis of the dynamics of the vortex perturbations of the
CCF state in the presence of an axial magnetic field. Here
we considered in detail stationary m = 0 axisymmetric Taylor
vortex perturbations and oscillatory nonaxisymmetric m = 1
spiral vortex flow.

In general, magnetic fields stabilize the basic CCF state
against vortex growth; however, when taking λ2 into account
we found modifications of this stabilization. Depending on,
e.g., the outer cylinder’s Reynolds number Re2 and the
axial wave number k of the vortex flow the primary, field
induced stabilization can be either enhanced or reduced by

the elongational flow induced contributions in the ferrofluid
equations of model ML. Thus, in the presence of a magnetic
field, the growth rates for vortex flow can be either reduced
or enhanced, respectively, relative to the λ2 = 0 reference
situation. However, in any case, i.e., for all parameter configu-
rations that we have explored, the elongational effect was never
big enough to overcompensate for the general, field induced
stabilization; only the magnitude of the latter was modified by
taking into account a finite λ2.

These modifications are typically larger for nonaxisymmet-
ric m = 1 spiral vortices than for axisymmetric m = 0 Taylor
vortices, but their variations with Re2 and k are qualitatively
similar. Furthermore, for m = 0 as well as for m = 1 vortices,
the λ2 terms cause a significant relative growth enhancement
of vortex flow with small k but a growth reduction when k is
larger.

The λ2-induced modifications of the spiral frequencies
ω at onset of vortex flow, i.e., of the imaginary parts of
the marginal eigenvalues, follow largely the changes of the
bifurcation thresholds for spiral flow. When a finite λ2 shifts
the latter upward (downward) in Reynolds number Re1 the
marginal spiral frequency increases (decreases) accordingly
as a consequence of the close relation between the spiral’s
rotation rate and that of the inner cylinder. Thus also the
marginal spiral frequencies show with increasing λ2 an upward
shift for large k and a downward shift for small k.

Given that the Taylor-Couette system provides very good
conditions for well controlled experiments on the behavior of
vortices, we hope that our results generate enough interest to
address the question of the relevance of any elongational effect
also experimentally. Its marked wave number dependence and
its influence on the spiral frequencies might possibly be large
enough to obtain experimental information on the magnitude
of λ2 in comparison with the model results presented here.
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APPENDIX: SOLVING THE LINEARIZED
EQUATIONS (3.5)

Here we give more details on the way we solved
Eqs. (3.5) using cylindrical coordinates. For the sake of
notational simplicity we use in this appendix the symbol H to
represent Hext.

The linearized equations (3.5) of model ML for u =
uer + veϕ + wez and δM = δMrer + δMϕeϕ + δMzez read in
cylindrical coordinates

0 =
(

∂r + 1

r

)
u + 1

r
∂ϕv + ∂zw, (A1)

∂tu = −vCCF

r
∂ϕu + 2vCCF

r
v − ∂rp + 1

r
∂ϕ

[
1

r
∂ϕu −

(
∂r + 1

r

)
v

]
+ ∂z(∂zu − ∂rw) + H∂zδMr, (A2)

∂tv = −2ACCFu − vCCF

r
∂ϕv − 1

r
∂ϕp + ∂r

[(
∂r + 1

r

)
v − 1

r
∂ϕu

]
+ ∂z

(
∂zv − 1

r
∂ϕw

)
+ H∂zδMϕ, (A3)
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∂tw = −vCCF

r
∂ϕw − ∂zp −

(
∂r + 1

r

)
(∂zu − ∂rw) − 1

r
∂ϕ

(
∂zv − 1

r
∂ϕw

)
− H

[(
∂r + 1

r

)
δMr + 1

r
∂ϕδMϕ

]

− (1 − λ2)χH

[(
∂r + 1

r

)
δMr + 1

r
∂ϕδMϕ + ∂zδMz

]
, (A4)

∂t δMr = − 1

τ
δMr − vCCF

2

1

r
∂ϕδMr + (1 − λ2)

BCCF

r2
δMϕ − vCCF

2

1

r
∂ϕδMz + 1

2
χH [∂zu − ∂rw + λ2(∂zu + ∂rw)], (A5)

∂t δMϕ = − 1

τ
δMϕ − (1 + λ2)

BCCF

r2
δMr − vCCF

1

r
∂ϕδMϕ + 1

2
χH

[
∂zv − 1

r
∂ϕw + λ2

(
∂zv + 1

r
∂ϕw

)]
, (A6)

∂t δMz = − 1

τ
δMz − vCCF

1

r
∂ϕδMz + λ2χH∂zw. (A7)

Inserting the solution ansatz (3.7) for the vortex perturbation fields with the temporal eigenvalue σ = γ + iω yields the set of
ordinary differential equations for the amplitudes of the m-k mode

0 =
(

∂r + 1

r

)
U + im

r
V + ikW, (A8)

σU = −vCCF
im

r
U + 2vCCF

r
V − ∂rP + im

r

[
im

r
U −

(
∂r + 1

r

)
V

]
+ ik(ikU − ∂rW ) + ikHM̂r, (A9)

σV = −2ACCFU − vCCF
im

r
V − im

r
P + ∂r

[(
∂r + 1

r

)
V − im

r
U

]
+ ik

(
ikV − im

r
W

)
+ ikHM̂ϕ, (A10)

σW = −vCCF
im

r
W − ikP +

(
∂r + 1

r

)
(∂rW − ikU ) − im

r

(
ikV − im

r
W

)
− H

[(
∂r + 1

r

)
M̂r + im

r
M̂ϕ

]

− (1 − λ2)χH

[(
∂r + 1

r

)
M̂r + im

r
M̂ϕ + ikM̂z

]
, (A11)

σM̂r = − 1

τ
M̂r − vCCF

2

im

r
M̂r + (1 − λ2)

BCCF

r2
M̂ϕ − vCCF

2

im

r
M̂z + 1

2
χH [ikU − ∂rW + λ2(ikU + ∂rW )], (A12)

σM̂ϕ = − 1

τ
M̂ϕ − (1 + λ2)

BCCF

r2
M̂r − vCCF

im

r
M̂ϕ + 1

2
χH

[
ikV − im

r
W + λ2

(
ikV + im

r
W

)]
, (A13)

σM̂z = − 1

τ
M̂z − vCCF

im

r
M̂z + λ2χHikW. (A14)

The subset of equations for the flow amplitudes contains second-order derivatives with respect to r . It is written as a system of
first-order equations

∂rU = −1

r
U − im

r
V − ikW, (A15a)

∂rV = im

r
U − 1

r
V + Y, (A15b)

∂rW = ikU + Z + (1 + χ − χλ2)HM̂r, (A15c)

∂rP = −
(

σ + vCCF

im

r

)
U + 2vCCF

r
V − im

r
Y − ikZ − ik(1 − λ2)χHM̂r, (A15d)

∂rY = 2ACCFU +
(

σ + vCCF
im

r

)
V + im

r
P − ikX + ik(1 − λ2)χHM̂ϕ, (A15e)

∂rZ =
(

σ + vCCF
im

r

)
W + ikP − 1

r
Z + im

r
X + ik(1 − λ2)χHM̂z, (A15f)

with

X = ikV − im

r
W + [1 + χ (1 − λ2)]HM̂ϕ. (A15g)
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The equations for the magnetization modes are transformed into linear algebraic equations that contain the flow modes U,V,W,Z

in the inhomogeneities[
σ̃ + 1

2
(1 − λ2)χ (1 + χ − χλ2)H 2

]
M̂r − (1 − λ2)

BCCF

r2
M̂ϕ + vCCF

2

im

r
M̂z =

[
ikλ2U − 1

2
(1 − λ2)Z

]
χH, (A16a)

(1 + λ2)
BCCF

r2
M̂r + σ̃ M̂ϕ =

[
1

2
(1 + λ2)ikV − 1

2
(1 − λ2)

im

r
W

]
χH,

(A16b)

σ̃ M̂z = λ2ikWχH. (A16c)

Here we have used the abbreviation

σ̃ = σ + 1

τ
+ vCCF

im

r
. (A16d)

The solution M̂ϕ,M̂r ,M̂z of the algebraic equations (A16) is inserted into Eqs. (A15). Then the first-order differential
equations (A15) are solved by a shooting method subject to the boundary conditions U = V = W = 0 at the cylinders r1

and r2. The space of parameters that we explore is spanned by λ2, H , m, k, Re1, and Re2. The two Reynolds numbers enter via
ACCF, BCCF, and vCCF, i.e., via the basic CCF state.

Here we restrict ourselves to marginal solutions with vanishing growth rate by imposing γ = 0 on the complex eigenvalue
σ = γ + iω.
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