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Interactions between nearly bicritical modes in Taylor-Couette flow, which have been concerned with the
framework of weakly nonlinear theory, are extended to fully nonlinear Navier-Stokes computation. For this
purpose, a standard Newton solver for axially periodic flows is generalized to compute any mixed solutions having
up to two phases, which typically arise from interactions of two spiral or Taylor vortex modes. Also, a simple
theory is developed in order to classify the mixed solutions. With these methods, we elucidate pattern formation
phenomena, which have been observed in a Taylor-Couette flow experiment. Focusing on the counter-rotating
parameter range, all possible classes of interaction of various solutions with different azimuthal and axial wave
numbers are considered within our computational restriction, and we observe numerous connection branches, e.g.,
footbridge solutions. Some of the mixed solutions result in a three-dimensional wavy spiral solution with axial
relative periodicity or an axially doubly periodic toroidally closed vortex solution. The possible connection of the
former solution family to spiral turbulence, which has been observed in highly counter-rotating Taylor-Couette
flow, is discussed.
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I. INTRODUCTION

TheTaylor-Couette system, consisting of a fluid between
two concentric independently rotating cylinders, is one of
the most famous references for pattern forming systems.
Numerous structures with different topologies are known to
appear in this system and have been studied extensively during
the past decades.

These studies were developed in the famous paper of
Andereck et al. [1]. As inner cylinder speed is increased,
according to their experimental results, either the rotationally
axisymmetric Taylor vortex flow (TVF) with toroidally closed
vortices or the degenerate spiral vortex flows (SPIs) with open
helicoidal left- and right-winding vortices emerge depending
roughly on whether the cylinders are corotating or counter-
rotating as excellently predicted by linear stability analysis of
the basic state referred to as circular Couette flow (CCF).

Both of the first emerged patterns have two-dimensional
structures since only a single linear unstable two-dimensional
mode of the CCF grows at first. However, as inner cylinder
speed is further increased, stable TVF and SPI structures are
destabilized sooner by other modes resulting in the emergence
of rich three-dimensional patterns.

Such mode competitions have been intensively examined
in the 1960–1980s by normal form reduction of Navier-Stokes
equations under the assumption of weak nonlinearity. These
studies mainly concern interactions of the TVF and SPI at their
bicritical points where both TVF and SPI states are linearly
critical so that the nonlinearity of the resultant mixed modes is
weak. Albeit the restriction, the reduced problem successfully
explains qualitative bifurcation scenarios of mixed solution
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branches. Detailed theoretical descriptions of the weakly
nonlinear analysis and comparisons to experimental results
are well documented in Refs. [2–6]. As a result, various
three-dimensional vortex states with sinusoidal azimuthal
variation, such as wavy vortex flow (WVF), twisted vortex flow
(TWI), wavy inflow boundaries (WIBs), and wavy outflow
boundaries (WOBs), defined in terms of a flat or wavy
vortex cell boundary, have been found. These structures have
also been identified in experiments (e.g., Refs. [1,7,8]) and
fully nonlinear computations via three-dimensional Floquet
instability of the TVF (e.g., Refs. [9,10]).

Another type of mode competition has been found in
an interaction between oppositely traveling right- and left-
winding SPI modes, which are mirror images of each other.
As can be seen from its construction, the mixed state, called a
ribbon (RIB), has a common bifurcation point as the two SPI
solutions, presenting an axially standing-wave structure [11].
This nonlinear SPI superposition is recently extended to cross
spirals with different amplitudes [12] and pitches [13]. In
Refs. [12,13], stable and unstable equilibrated wavy spiral pat-
terns (WSPs) were observed simulating Navier-Stokes equa-
tions in carefully chosen symmetry restricted subspaces with
axially periodic constraints. A similar pattern has also been
observed in transitions between SPI and TVF [14], which had
theoretically been predicted by weakly nonlinear theory [4,5].

Although three-dimensional finite-amplitude solutions of
Navier-Stokes equations in the Taylor-Couette flow have been
studied by simulation or Floquet stability theory to the TVF as
above for some time, corresponding bifurcation analysis near
bicritical points is intensively examined here, since one of
our motivations is to bridge the bicritical bifurcation scenario
by weakly nonlinear analysis and fully nonlinear computation
of finite-amplitude solutions. Another motivation comes from
the fact that, in all weakly and fully nonlinear calculations,
so far, the wave numbers of superimposed states are chosen
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to be identical so that the resultant mixed state also has the
same axial periodicity. Thus, we extend the standard numerical
method in order to compute interaction analysis for the general
axial wave number choice. To find the possible symmetry of the
bifurcating mixed solution branches in the general situation,
we also propose a simplified theoretical approach considering
the form of the solutions’ phases instead of the normal form
reduction or formal group theory, which makes arguments
more complex.

There is also a large physical interest in the general axial
wave number case. It has been shown by Refs. [15–19] that, for
highly counter-rotating Taylor-Couette flow, an axially large
structure due to an inclined and banded spatially intermittent
pattern emerges. For such a situation, the relative periodicity
in an axial direction, i.e., flow fields at upper and lower lids
coincide when a proper azimuthal shift is applied, is considered
to be a more suitable choice of boundary conditions than
the usual axial periodic conditions. Our interaction analysis,
indeed, yields this condition as a result. With this application
in mind, the parameter range is adjusted to that of Ref. [18]
throughout the paper.

The paper is subdivided into five main parts. Following the
introduction, Sec. II describes the mathematical formulation
of the problem. We describe our numerical method based on
Newton’s iterative method since, as found in Ref. [20], some
solution branches can be weakly subcritical in counter-rotating
Taylor-Couette flow. In Sec. III, we begin with the analysis
of the system by examining the possible symmetry of mixed
solutions. Based on the symmetry analysis, Sec. IV presents
the Navier-Stokes computational results of various nonlinearly
interacting equilibrated solutions. Finally, we discuss our
results and draw some conclusions in Sec. V.

II. FORMULATION OF THE PROBLEM

A. Governing equations

We consider a fluid flow driven in an annular gap between
two infinitely long independently rotating cylinders. The inner
cylinder of radius r∗

i rotates with angular speed �∗
i , and

the outer cylinder of radius r∗
o rotates with angular speed

�∗
o. The fluid in the annulus is considered to be Newtonian,

isothermal, and incompressible with kinematic viscosity ν∗
and density ρ∗. Using the gap width d∗ = r∗

o − r∗
i , the radial

diffusion time d∗2/ν∗, and ρ∗ as the length, time, and density
scales, respectively, the velocity in cylindrical coordinates
(r,θ,z),u = uer + veθ + wez, and pressure p are governed by
the nondimensional Navier-Stokes and continuity equations,

∂tu + (u · ∇)u = −∇p + ∇2u, ∇ · u = 0, (1)

together with no-slip conditions on the cylinder walls. The
system has three parameters: the inner Reynolds number Rei =
�∗

i r
∗
i d∗/ν∗, the outer Reynolds number Reo = �∗

or
∗
o d∗/ν∗,

and the radius ratio η = r∗
i /r∗

o . Both latter parameters are fixed
in this paper with Reo = −1200 and η = 0.883, which are used
in Meseguer et al. [18,20]. The basic solution of the system is
given by the circular Couette flow (CCF) profile,

uCCF(r) = vCCF(r)eθ = {Ar + Br−1}eθ , (2)

where the no-slip boundary conditions determine the coeffi-
cients A = Reo−η Rei

1+η
and B = η(Rei−η Reo)

(1−η)2(1+η) .

Considering periodic or relative periodic boundary con-
ditions in the axial direction, i.e., the flow field satisfies
u(r,θ,z,t) = u(r,θ + ε,z + δ,t), for some ε,δ ∈ R, the gov-
erning equations Eq. (1) and the boundary conditions are
invariant under rotations Rθ ′ with arbitrary angle θ ′ about the
cylinder axis, axial translations Tz′ , time translations 
t ′ , and
reflection σ about z = 0 at arbitrary height. The actions of
these symmetries on velocities and pressure are

Rθ ′(u,v,w,p)(r,θ,z,t) = (u,v,w,p)(r,θ + θ ′,z,t), (3a)

Tz′(u,v,w,p)(r,θ,z,t) = (u,v,w,p)(r,θ,z + z′,t), (3b)


t ′(u,v,w,p)(r,θ,z,t) = (u,v,w,p)(r,θ,z,t + t ′), (3c)

σ (u,v,w,p)(r,θ,z,t) = (u,v,−w,p)(r,θ,−z,t). (3d)

B. Numerical methods

The numerical scheme throughout the present paper is
based on Ref. [21], which solves the three-dimensional
traveling-wave solutions of Eq. (1) in a rectangular periodic
domain (θ,z) ∈ [0,2π/n0] × [0,2π/k0], where n0 and k0

represent the azimuthal and axial wave numbers, respectively.
We first briefly summarize this method and then proceed to
the more complicated present case.

The key methodology used in Ref. [21] is the multidi-
mensional Newton-Raphson iterative scheme for the quadratic
algebraic equations Fi = DijXj + Hijj ′XjXj ′ = 0, which is
obtained as a result of Fourier-Galerkin and Chebyshev-
collocation discretization of the governing equations (1)
introducing the potential approach [22] where the velocities
are decomposed as u = veθ + wez + ∇ × ∇ × (φer ) + ∇ ×
(ψer ). Potentials φ and ψ and mean flows v and w, which
are defined by the θ -z average over the periodic domain, are
approximated as

φ(r,ϕ1,ϕ2) =
L∑

l=0

N∑
n=−N

(n,k)�=(0,0)

K∑
k=−K

X
(1)
lnkfl(x)ei(nϕ1+kϕ2), (4)

ψ(r,ϕ1,ϕ2) =
L∑

l=0

N∑
n=−N

(n,k)�=(0,0)

K∑
k=−K

X
(2)
lnkgl(x)ei(nϕ1+kϕ2), (5)

v(r) = vCCF(r) +
L∑

l=0

X
(1)
l00gl(x), (6)

w(r) =
L∑

l=0

X
(2)
l00gl(x), (7)

where fl(x) = (1 − x2)2Tl(x) and gl(x) = (1 − x2)Tl(x) are
the modified lth Chebyshev polynomials Tl . In order to use
Chebyshev expansion, the radial coordinate is mapped to
x = 2(r − rm) ∈ [−1,1] by using mean radius rm = (ri +
ro)/2. The rest of the variables can be summarized in two
phases ϕ1 and ϕ2. For three-dimensional traveling waves in
the rectangular periodic domain, the phases are [ϕ1,ϕ2] =
[n0(θ − Cθ t),k0(z − Czt)], denoting the azimuthal and axial
phase speeds as Cθ and Cz, respectively. In the following, it
will be found that this expression is just a special case of the
methodology throughout the paper.

Here, the present computational approach considers the
more general situation: We assume that the solution of Eq. (1)
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can be written in r and the generalized two phases,

[ϕ1,ϕ2] = [a1θ + b1z − c1t,a2θ + b2z − c2t], (8)

where a1,a2,b1, and b2 are the generalized wave numbers
and c1 and c2 are the generalized frequencies (note that,
physically, a1 and a2 must be integers to assure 2π azimuthal
periodicity, although there is no mathematical and compu-
tational inconveniences when they are noninteger values).
With this generalization, we can consider a wider class of
solutions than the previous method. The equations to be
solved for this general case can easily be obtained from the
previous formulation by replacing [θ,z,t] derivative operators
inn0,ikk0, and −i(nn0Cθ + kk0Cz) with in(a1 + a2),ik(b1 +
b2), and −i(nc1 + kc2), respectively. If all of the wave numbers
a1,a2,b1, and b2 are nonzero, the flow regime is periodic in a
parallelogram shape domain in an unrolled θ -z plane, spanned
by two vectors [θ,z] = [θ ′,z′] and [θ ′′,z′′] (cf. Fig. 1). The
values of these vectors can be obtained as

[θ ′,z′] =
[

2πb2

a1b2 − a2b1
,

−2πa2

a1b2 − a2b1

]
, (9)

and

[θ ′′,z′′] =
[ −2πb1

a1b2 − a2b1
,

2πa1

a1b2 − a2b1

]
, (10)

by solving [2π,0] = [a1θ
′ + b1z

′,a2θ
′ + b2z

′] and [0,2π ] =
[a1θ

′′ + b1z
′′,a2θ

′′ + b2z
′′]. The phase speeds in the [θ ′,z′]

and [θ ′′,z′′] directions are

C ′ =
c1

√
a2

2 + b2
2

a1b2 − b1a2
, (11)

and

C ′′ =
c2

√
a2

1 + b2
1

a1b2 − b1a2
, (12)

respectively. By setting N = 0 or K = 0 in Eqs. (4) and (5),
we can compute the solution, which has only one phase. In
this case, one phase-lock condition is needed.

Here, we want to remark that, for (a1,a2,b1,b2) =
(n0,0,0,k0), we recover the formulation of Ref. [21], described
above. Notice also that the unknown vector Xi in the algebraic
equations includes the phase speeds in addition to the spectral
coefficients. Additional equations for them are phase-lock
conditions for ϕ1 and ϕ2 [e.g., Im(X(1)

120) = Im(X(1)
102) = 0].

As a quantity to measure different finite-amplitude solu-
tions, we use the CCF-normalized torque on the inner cylinder
wall �, given by

� = −r3∂r (r−1v)

−r3∂r (r−1vCCF)

∣∣∣∣
r=ri

. (13)

III. PHASE SYMMETRY ANALYSIS

The aim of this section is the classification of solutions in
terms of the form of their phases and symmetry. Although the
solution X ∈ (u,v,w,p,c1,c2) is considered to have two phases
in the following preliminary, the argument is the same if the
number of phases is different.

A general problem which arises when we consider the
symmetry of solutions is that, even when a solution is
invariant under some operation S, sometimes this property
is not preserved when the origin of the [θ,z,t] coordinate
is changed. Therefore, for the sake of simplicity, we say
solution X is essentially invariant to operator S if there exist
θ ′,z′,t ′ ∈ R such that SRθ ′Tz′
t ′X = Rθ ′Tz′
t ′X. We pose
two assumptions in the symmetry analysis.

(i) The first assumption is that X is periodic in ϕ1 and ϕ2

with fundamental period 2π , namely,

τδ1,δ2 X = X ⇔ δ1, δ2 ∈ Z, (14)

where the translation operator for the phases is defined as

τδ1,δ2 X(r,ϕ1,ϕ2) = X(r,ϕ1 + 2πδ1,ϕ2 + 2πδ2), (15)

where “⇔” means the left and right statements are logically
equivalent. This condition ensures every pattern to be unique in
a fundamental periodic cell, i.e., (ϕ1,ϕ2) ∈ [0,2π ] × [0,2π ].
The time and spatial shift operation Rθ ′Tz′Φt ′ is identical to the
phase shift operation τδ1,δ2 if [2πδ1,2πδ2] = [a1θ

′ + b1z
′ −

c1t
′,a2θ

′ + b2z
′ − c2t

′] is satisfied. Therefore, we can also
consider the symmetry of solutions in terms of phases (X
is essentially invariant to S if there exist δ1,δ2 ∈ R such that
Sτδ1,δ2 X = τδ1,δ2 X).

(ii) The second assumption is that the operator S is an
arbitrary combination of some Rθ ′

i
,Tz′

i
,
t ′i , and σ where

θ ′
i ,z

′
i ,t

′
i ∈ R for i = 1,2, . . . . Note that such a S can be

rewritten in either τε1,ε2 or τε1,ε2σ by using some ε1,ε2 ∈ R.
Note that, for the former case, ε1,ε2 ∈ Z by assumption (14),
and there is no special case. Thus, in the following subsections,
we list all possible symmetries of one- and two-phase solutions
restricting attention to the latter case.

A. One phase

Suppose X(r,ϕ1) is essentially invariant to S = τε1σ where
the translation operator is defined by

τδ1 X(r,ϕ1) = X(r,ϕ1 + 2πδ1). (16)

The dependence of the phase against reflectional operation σ

determines the symmetry of the solution. Since S acts on the
phases as a linear operator which does not break the form
of the phases, simple analysis of an equation σϕ1 = �ϕ1,
where � ∈ R, yields all possible cases. Recalling that σ is the
reflectional operator which does not change the length unit of
the phase, � must be either 1 or −1. Note that this is consistent
with the fact that by twice considering the operations of σ , we
find the identity.

(1) If σϕ1 = ϕ1, then ϕ1 = a1θ − c1t . The solution satisfies
σX = X, and the operators τδ1 and σ are commutative
(τδ1σ = στδ1 ) for any δ1 ∈ R. It will be shown that this
type of instability is absent in our considered parameter
region. However, here, we remark that this type of solution
is called the Tollmien-Schlichting wave in the boundary-layer
or channel-flow problem. Using assumption (14), we find the
shift value ε1 in the operation S belongs to Z.

(2) If σϕ1 = −ϕ1, then ϕ1 = b1z. The operators τδ1 and
σ are anticommutative (τδ1σ = στ−δ1 ) for any δ1 ∈ R. We
call this type of solution the Taylor vortex flow (TVF).
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Note that, for any ε1 (X is essentially invariant to S) ⇔
(X is essentially invariant to σ ).

(3) If X is not essentially invariant to S, then b1 �= 0. The
solution X is called the spiral vortex flow (SPI). As a result
of symmetry breaking, there exist degenerate left- and right-
winding SPI solutions which satisfy cross parity against S
[the result of operation S to a left-winding (right-winding)
SPI solution is a right-winding (left-winding) SPI solution].
Note that this case also includes traveling-wave type Taylor
vortex flows with a phase ϕ1 = b1z − c1t .

B. Two phases

Suppose X(r,ϕ1,ϕ2) is essentially invariant to S = τε1,ε2σ .
To extract all possible symmetries, consider an equation
σ [ϕ1,ϕ2] = �[ϕ1,ϕ2], where � ∈ R2×2. The matrix � must
have two 1 or −1 components and two zero components (since
the result of the operation must also have two phases). By twice
considering the operations of σ , we find �2 must be an identity
matrix. Such a matrix is either[

I 0
0 J

]
or

[
0 I

I 0

]
with I,J ∈ {1,−1}. (17)

(1) If σ [ϕ1,ϕ2] = [ϕ1,ϕ2], then [ϕ1,ϕ2] = [a1θ − c1t,

a2θ − c2t]. The doubly periodic Tollmien-Schlichting wave
solution found by Ref. [23] in channel flow is this type, but it
is not possible to identify similar solutions in our model and
parameter range. In this case, σX = X is satisfied. Together
with the relation τδ1,δ2σ = στδ1,δ2 , for any δ1,δ2 ∈ R, one finds
the shift values ε1,ε2 in the operation S belong to Z.

(2) If σ [ϕ1,ϕ2] = [−ϕ1, − ϕ2], then [ϕ1,ϕ2] = [b1z,b2z].
We call this type of solution the doubly periodic Taylor vortex
flow (dTVF). Since τδ1,δ2σ = στ−δ1,−δ2 for any δ1,δ2 ∈ R
(X is essentially invariant to S) ⇔ (X is essentially invariant
to σ ) for any ε1,ε2 ∈ R. Note that, if b1/b2 ∈ Z, i.e., the wave
numbers of the phases are rational, X can be rewritten in only
one phase ϕ1 = b1x and, thus, reduces to TVF.

(3) If σ [ϕ1,ϕ2] = [ϕ1, − ϕ2], then [ϕ1,ϕ2] =
[a1θ − c1t,b2z], i.e., the solution is a three-dimensional
traveling wave (the case σ [ϕ1,ϕ2] = [ϕ1, − ϕ2], i.e., [ϕ1,ϕ2] =
[b1z,a2θ − c2t], leads to a similar argument). The relation
τδ1,δ2σ = στδ1,−δ2 holds for any δ1,δ2 ∈ R. Since X must also
essentially be invariant toS2 = τ2ε1,0, the shift value ε1 belongs
to either Z or Z + 1/2 and (X is essentially invariant to S) ⇔
(X is essentially invariant to σ ), for any ε2 ∈ R (therefore,
the shift value ε2 is set out to 0 in the following), is satisfied.
This implies there are three possible cases.

(i) X is essentially invariant to the so-called reflection
symmetry σ but not essentially invariant to the so-called
shift-reflection symmetry τ1/2,0σ . We call this type of
solution the twisted vortex flow (TWI).

(ii) X is essentially invariant to shift-reflection symmetry
τ1/2,0σ but not essentially invariant to reflection sym-
metry σ . We call this type of solution the wavy vortex
flow (WVF).

(iii) If X is essentially invariant to both reflection symme-
try and shift-reflection symmetry σ and τ1/2,0σ , then
στ0,δ2+δX = τ0,δ2+δX, and τ1/2,0στ0,δ2 X = τ0,δ2 X holds
for some δ,δ2 ∈ R. However, by combining these rela-
tions, we can deduce τ1/2,2δX = X, which contradicts

FIG. 1. (Color online) The parallelogram domain bounded by
thick solid lines shows one fundamental periodic cell. The assump-
tion (18) allows the obliquely aligned same pattern as in the colored
regions, i.e., τ1/3,1/3X = X, whereas, the assumption (14) does not.

assumption (14). In order to understand this case more
clearly, it is worth changing the assumption (14) to

τδ1,0X = X ⇔ δ1 ∈ Z,
(18)

τ0,δ2 X = X ⇔ δ2 ∈ Z.

The new assumption (18) implies the restriction for the
solutions is “relaxed” from (14) in some sense since it
does not say anything for the multishift. Therefore, it
is possible to realize the same pattern in a fundamental
periodic cell as in Fig. 1. Under this new assumption,
we can find 2δ �∈ Z and 4δ ∈ Z, i.e., X must also be
essentially invariant to τ1/2,1/2. Note that, by switching
phases as ϕ1 + ϕ2 → ϕ1 and ϕ1 − ϕ2 → ϕ2, this case
coincides with the next case, the ribbon.

(4) If σ [ϕ1,ϕ2] = [ϕ2,ϕ1], then [ϕ1,ϕ2] = [aθ + bz − ct,

aθ − bz − ct] (the case of σ [ϕ1,ϕ2] = [−ϕ2,−ϕ1], i.e.,
[ϕ1,ϕ2] = [aθ + bz − ct,−aθ + bz + ct], leads to a similar
argument). The relation τδ1,δ2σ = στδ2,δ1 holds for any δ1,δ2 ∈
R. We call this type of solution the ribbon (RIB).

We note here that S can be transformed into
τ−ε2/2,−ε1/2τ(ε1+ε2)/2,(ε1+ε2)/2στε2/2,ε1/2 in this case. This means
(X is essentially invariant to S) ⇔ (X is essentially invari-
ant to τ(ε1+ε2)/2,(ε1+ε2)/2σ ). Recalling ε1 + ε2 ∈ Z, we can
find the solution is essentially invariant to both reflection
symmetry σ and shift-reflection symmetry τ1/2,1/2σ . The
difference between the present case and (iii) in the last
case is the choice of periodic cell as indicated in Figs. 2(a)
and 2(b), respectively.

FIG. 2. (Color online) Schematics of two choices of periodic
domain for RIB solutions. The thick solid lines show the boundary of
a fundamental periodic cell. The regions in the same color indicate
the same patterns. Note that (a) is not compatible to assumption (14),
whereas, (b) satisfies both of the assumptions (14) and (18).
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Note that standing-wave type Taylor vortex flows, which have
phases [ϕ1,ϕ2] = [bz − ct,bz + ct], are included in this case.

(5) If X is not essentially invariant to S, then b1 �= 0 and
b2 �= 0. We call this type of solution the wavy spiral vortex
flow (WSP). Cross parity exists for this solution type due to
the symmetry breaking.

As an overall remark about this section, here, we note that,
so far, the flow classification has been performed only in terms
of symmetry. Hence, the terminologies in this paper can differ
from those used in the simulations and experiments referred
to in Sec. I, despite our best efforts to maintain consistency
between them.

IV. NUMERICAL RESULTS

In this section, we apply the phase symmetry analysis in
the last section to the bifurcation problem of (1). We start
our numerical analysis in the first subsection clarifying the
linear stability properties of the basic flow against various
axisymmetric and nonaxisymmetric modes in the parameter
region we investigate in this paper. For some particular
parameter choices, called bicritical points, two distinct critical
instabilities coexist. The analysis in Sec. III yields the
symmetry of possible bifurcating nonlinear solutions from the
superposition of these linear bicritical modes. Therefore, we
can omit weakly nonlinear analysis, which formally ensures
the existence of a nonlinear mixed solution, and directly
proceed to fully nonlinear computations elucidating the
interactions of SPI-SPI, SPI-TVF, and TVF-TVF instabilities.

A. Linear stability of the basic flow

As a preliminary of nonlinear analysis, we examine the
linear instability, i.e., the instability against infinitesimally
small disturbances to the basic flow. Neglecting nonlinear
terms, the solutions of the linearized problem are proportional
to exp(in0θ + ik0z + γ t) where the sign of the real part
of the complex growth rate γ ∈ C determines whether the
disturbances grow or decay. Therefore, if n0 �= 0 and k0 �= 0,
the critical solutions have SPI type symmetry, in general.
When some axial wave number k0 is taken, SPI modes with
an azimuthal wave number n0 = ±m,m ∈ Z shows the same
stability property. Note that the symmetry of the system allows
us to only consider positive k0.

For the present control parameters (η,Reo) = (0.883,

−1200), Meseguer et al. [20] showed, as increasing Rei , the
basic flow encounters, first, SPI type instability with n0 = ±5
at (Rei ,k0) = (447.35,5.125) and then, SPI type instability
with n0 = ±4 at (Rei ,k0) = (470.44,3.76). The red (medium
gray) solid curves in Fig. 3 indicate the critical curves taken all
over k0 for these n0 = 5 and n0 = 4 SPI modes, respectively.
For n0 = 0, the critical curve is depicted as the green (light
gray) solid curve. On this critical curve, we confirm that the
real part of γ is identical to zero, suggesting that this mode
has TVF type symmetry. The green (light gray) dot-dashed
curve is essentially the same result as the solid TVF curve,
but the value of k0 is divided by a factor of 2. This means
the curve represents a stability boundary for two-cell TVF
within z ∈ [0,2π/k0] (hereinafter, we abbreviate m-cell TVF
states as TVF × m using m ∈ N). Within the investigated

 400

 450

 500

 550

 600

 0  2  4  6  8  10  12  14

R
e i

k0

SPI (n0=±4) SPI (n0=±5)

TVF

TVF×2

FIG. 3. (Color online) The linear critical curves for (η,Reo) =
(0.883, −1200). The SPI type stability boundaries are indicated by red
(medium gray) curves, whereas, those of the TVF type are indicated
by green (light gray) curves. The instabilities are examined against k0,
which is taken to be the fundamental period except for the dot-dashed
curve where a two-cell state [denoted as (TVF × 2)] is considered in
z ∈ [0,2π/k0]. The bicritical points of SPI instabilities with n0 = ±5
and n0 = ±4, a SPI instability with n0 = ±4 and a TVF instability,
and a SPI instability with n0 = ±5 and a TVF × 2 instability are
marked by a +, a 	, and a �, respectively.

parameter region, there is no Tollmien-Schlichting wave type
linear instability as remarked in Sec. III A.

B. SPI-SPI interactions

Using a linear critical disturbance as an initial guess of
Newton’s method, one can obtain finite-amplitude solutions
of (1). The resultant solution branch bifurcating from a single
SPI type linear critical disturbance must inherit SPI symmetry
as observed in Ref. [20]. In this subsection, we focus on
nonlinear interactions of several SPI type instabilities. In order
to obtain such mixed states, we use superimposed linear critical
SPI disturbances as an initial guess for Newton iterations. For
the sake of simplicity, first, we consider the interactions of SPI
solutions which have an equal axial wave number k0. In this
case, the story is similar to Refs. [12,13], but the approach is
different here. The mixed solutions are produced in the vicinity
of the bicritical point (k+

0 ,Re+
i ) = (4.037,459.62) where the

linear critical curves of n0 = ±5 and ±4 intersect at the “ + ”
marked in Fig. 3. The bifurcation scenarios at k0 < k+

0 and
k0 > k+

0 are shown in Figs. 4(a) and 4(b), respectively. The
two red (medium gray) thin curves in the figures represent
the SPI solution branches. We denote SPI solutions with
n0 azimuthal dependence as Sn0 in this subsection. As we
already remarked, left- and right-winding spirals, which have
phases (n0θ + k0z − ct) and (−n0θ + k0z + ct), respectively,
for n0 > 0, bifurcate simultaneously at the SPI critical point
(note that they are degenerate in the bifurcation diagrams).
Therefore, in principle, interactions of arbitrary combinations
of S4,S5,S−4, and S−5 disturbances can be considered,
although we only discuss the interactions of two of them due
to our numerical code restriction.

Practically, mixed mode calculations can be performed by
choosing the two phases ϕ1 and ϕ2 in Eqs. (4) and (5) as the
two original SPI solution phases. These solutions are input in
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W4
5

 458  459  460  461
Rei

S5

S4R4 R5W4
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(a) (b)

FIG. 4. (Color online) The bifurcation diagrams near the bicritical
point of S5 and S4 disturbances (k+

0 ,Re+
i ) = (4.037,459.62) in Fig. 3

for (a) k+
0 > k0 = 4.02 and (b) k+

0 < k0 = 4.06. The red (medium
gray) thin, blue (dark gray) medium thick, and magenta (medium
gray) thick curves correspond to solutions with SPI, RIB, and WSP
symmetries, respectively. Here and hereinafter, the bifurcation points
in the bifurcation diagrams are indicated by open circles, and only
one of the overlapped solutions (e.g., S5 and S−5) is indicated for the
sake of simplicity (cf. Sec. III).

entries X
(j )
ln0 and X

(j )
l0k multiplied by some weights to provide

an initial guess of the Newton iterative scheme in the vicinity
of a bicritical point. If the weights are proper, the iterations
converge to a mixed solution.

The nonlinearly superimposed equilibrated solutions of
the left-winding SPI solutions and their right-winding coun-
terparts are plotted as the blue (dark gray) medium thick
curves in Fig. 4. Comparing the phases and the arguments
in Sec. III, one finds the mixed solutions have RIB type
symmetry. Henceforth, the interaction of S5[S4] and S−5[S−4]
is denoted by R5[R4]. Note that these RIB and SPI solutions
must bifurcate from the same critical point.

In contrast, the mixed mode branch between SPI solutions
with different pitches does not connect to the basic state
but bridges the two SPI solution branches instead [the thick
magenta (medium gray) curves in Fig. 4]. Since this type of
mixed solution has WSP type symmetry, we denote the Si-Sj

bridge solution as Wi
j for short. As explained in Sec. III, Wi

j

and W−i
−j solution branches are overlapped in the bifurcation

diagram. The fact that the W−5
4 (W 5

−4) branch only exists if
k0 > k+

0 , whereas, the W 5
4 (W−5

−4 ) branch only exists if k0 < k+
0 ,

suggests the annihilation of the end points of the branches at
the bicritical point (k+

0 ,Re+
i ).

The W−5
4 solution continues to exist in a wider range of

Rei when the axial wave number is increased to k0 = 5.125
(cf. Fig. 5). For this parameter, the azimuthal vorticity ω =
∂zu − ∂rw of typical S5,S4,R5,R4, and W−5

4 solutions are
visualized in Figs. 7(a)–7(e). All of the plots in Fig. 7 are
depicted at quarter gap r − rm = −0.25 in rectangular domain
(θ,z) ∈ [0,2π ] × [0,2π/k0] where the all flow regimes are
periodic. The visualizations of the SPI and RIB solutions are
consistent with Ref. [20], whereas, the W−5

4 solution has a
similar appearance to Ref. [13].

The branch of W 5
4 solutions, which is the mixed state

between two SPI solutions with an equal sigh of helicities
reported here, can be continued for a smaller axial wave
number k0 = 3.94 (cf. Fig. 6). For this wave number,
the bifurcation diagram looks much more complicated than
Fig. 4(a). This is due to the reconnection of the W 5

4 solution

 1

 1.1

 1.2

 1.3

 440  450  460  470  480  490  500

Δ

Rei

R5

S5

S4
R4

W4
-5

FIG. 5. (Color online) The caption is the same as Fig. 4, except
for k+

0 < k0 = 5.125.

branch to another bridge solution as k0 is decreased. As a
result, two segments of solution branches, whose both end
points are attached to the same SPI solution branch, emerge.
This is analogous to the bypass WSP solution branches found
in Ref. [13]. Another reason for the complexity is the presence
of the second turning point of the RIB solution branches. After
this turning point, both R5 and R4 solution branches connect
to the TVF × 2 solution branch, which is originated from the
green (light gray) dot-dashed linear critical curve in Fig. 3
(we will examine the bifurcation of the RIB solution from the
TVF × 2 solution in Sec. IV C). The flow visualization of the
W 5

4 solution, Fig. 7(f), shows a spiral-like dominated structure,
but we can clearly see fringe due to the nonlinear interference
of the S5 and S4 solutions.

The method is the same, even when the interacting SPI
solutions have different k0’s. The exemplary Fig. 8 illustrates
the bridge solution between S−5 with k0 = 5.125 (cf. Fig. 5)
and S4 with k0 = 3.94 (cf. Fig. 6). In this case, the flow
regime of the bridge solution W−5

4 is no longer periodic in
the axial direction as shown in Fig. 9. Instead, the solution
has the parallelogram shape periodic cells, which are spanned
by Eqs. (9) and (10) (cf. Fig. 1) as indicated by the solid
and dashed lines, satisfying relative periodicity in the axial

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 450  460  470  480  490  500

Δ

Rei

R5

S5

R4S4

W4
5

TVF×2

FIG. 6. (Color online) The caption is the same as Fig. 4, except
for k+

0 > k0 = 3.94. The green (light gray) dot-dashed curve is the
TVF × 2 solution branch (cf. Fig. 3).
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 7. (Color online) The azimuthal vorticity ω = ∂zu − ∂rw of
various flow states as indicated on the unrolled cylinder surface r −
rm = −0.25. The horizontal axis represents θ ∈ [0,2π ], whereas, the
vertical axis is z ∈ [0,2π/k0] where k0 = 5.125 for (a)–(e), whereas,
k0 = 3.94 for (f). The maximum magnitude of ω, denoted as Cmax in
the color bar, are (a) 205.26, (b) 193.60, (c) 200.43, (d) 206.76, (e)
147.74, and (f) 12.93. (a) The S5 solution in Fig. 5 at Rei = 480. (b)
The S4 solution in Fig. 5 at Rei = 480. (c) The R5 solution in Fig. 5
at Rei = 480. (d) The R4 solution in Fig. 5 at Rei = 480. (e) The
W−5

4 solution in Fig. 5 at Rei = 460. (f) The W 5
4 solution in Fig. 6 at

Rei = 470.
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Δ
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FIG. 8. (Color online) The bifurcation diagram of the WSP type
bridge solution W−5

4 between the SPI type solution branches for
S−5(k0 = 5.125) and S4(k0 = 3.94). The W−5

4 solution has phases
[ϕ1,ϕ2] where the form of phases ϕ1 = −5θ + 5.125z − c1t and ϕ2 =
4θ + 3.94z − c2t is identical to the phase of S5 and S−4, respectively
(note that c1 and c2 of the mixed solution differ from those of the
original SPI solutions due to nonlinear collections).

direction. Note that the pitches of these lines are identical to
those of the S4 and S−5 solutions, respectively.

C. SPI-TVF interactions

As for the SPI-SPI interactions in the last subsection,
we can also consider the mixed WSP type solution by the
SPI-TVF interaction. In addition, it is possible to compute
mixed solutions of two SPI disturbances, which are mirror
images, and a TVF disturbance, which is considered to be
a RIB-TVF interaction recalling the former pair of SPIs
creates a RIB in a special situation: The RIB disturbance has
the phases [ϕ1,ϕ2] = [aθ + bz + ct,−aθ + bz − ct], and the
TVF disturbance has the phase ϕ = Qbz where either Q ∈ Z
or 1/Q ∈ Z is satisfied. In this case, the superimposed state
X = XR + τ0,δXT , where δ ∈ R is a relative axial shift value
between the RIB disturbance XR and the TVF disturbance XT ,
can be rewritten in a two-phase state as follows.

FIG. 9. (Color online) The azimuthal vorticity ω of the W−5
4

solution in Fig. 8 for Rei = 450 at r − rm = −0.25 and (θ,z) ∈
[0,2π ] × [0,3π/5.125].Cmax = 138.43. The flow is periodic in the
parallelogram shape domain bounded by solid and dashed lines
spanned by Eqs. (9) and (10) (cf. Fig. 1).
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(1) For the interaction of the RIB and subharmonic TVF
disturbances (the fundamental axial period of the TVF dis-
turbance is shorter than that of the RIB disturbance), i.e.,
Q ∈ Z, the proper choice of phases is (ϕ1,ϕ2) = (aθ + ct,bz).
Therefore, the superimposed solution must have TWI, WVF,
or RIB type symmetry (see Sec. III), i.e., at least one of the
reflection and shift-reflection symmetries must be satisfied.
Noting that by considering the periodicity of XR and XT ,

XR = τ0,δXR ⇔ δ ∈ Z,

XT = τ0,δ/QXT ⇔ δ ∈ Z,

we can find the following two cases to be allowed.
(i) If σXR = XR and σXT = τ0,δσXT , the superimposed

solution has reflection symmetry. A simple calculation
yields that the shift value must be δ ∈ Z

Q
.

(ii) If τ0,1/2σXR = XR and τ0,1/2σXT = τ0,δσXT , the super-
imposed solution has shift-reflection symmetry. The shift
value must be δ ∈ Z+Q/2

Q
.

(2) For the interaction of the RIB and superharmonic
TVF disturbances (the fundamental axial period of the TVF
disturbance is longer than that of the RIB disturbance), i.e.,
1/Q ∈ Z, the proper choice of phases is (ϕ1,ϕ2) = (aθ +
ct,Qbz). The periodic conditions are

XR = τ0,QδXR ⇔ δ ∈ Z,

XT = τ0,δXT ⇔ δ ∈ Z.

The condition that the superimposed solution must have at least
one of the reflection and shift-reflection symmetries yields the
following two cases.
(i) If σXR = XR and σXT = τ0,δσXT , the superimposed

solution has reflection symmetry. The shift value must
be δ ∈ Z.

(ii) If τ0,Q/2σXR = XR and τ0,Q/2σXT = τ0,δσXT , the su-
perimposed solution has shift-reflection symmetry. The
shift value must be δ ∈ Z + Q/2.

From the above arguments, one finds, if Q[1/Q] is odd, the
resultant mixed state has either TWI or WVF type symmetry
depending on the choice of shift value δ, whereas, if Q[1/Q]
is even, the mixed state always has a RIB type symmetry. In
the following, we demonstrate these types of interactions in
our numerical code restricting attention to Q = 1 (odd case)
and Q = 2 (even case).

First, we investigate the odd case by examining interactions
of the SPI disturbance with n0 = ±4 and a TVF disturbance
near their bicritical point at (k	

0 ,Re	
i ) = (9.217,486.67) (cf.

Fig. 3). Figures 10(a) and 10(b) represent bifurcation diagrams
at k0 = 9.16 < k

	
0 and k0 = 9.28 > k

	
0 , respectively. In the

figure, the bifurcation point of the TWI (WVF) solution branch
makes a transfer from the TVF (RIB) solution branch to the
RIB (TVF) solution branch when k0 crosses k

	
0 . Also, the

bifurcation point of the WSP solution branch moves from
the WVF solution branch to the SPI solution branch. These
transfers do not change the global picture of the bifurcation
diagram shown in Fig. 11.

Figure 12 illustrates the flow fields of the solutions in
Fig. 11. These visualizations and the schematics illustrated
in Fig. 13 should help readers’ intuitive understanding of
the interaction. As can be seen in both figures, the axes
of reflection symmetry (black solid line in Fig. 13) and

 0.998
 1

 1.002
 1.004
 1.006
 1.008

 1.01
 1.012

 482  483  484  485  486  487  488

Δ

Rei

TWI
WVF

WSP
RIB

SPI

TVF

 484  485  486  487  488  489  490
Rei

TWI

WVF

WSP RIB
SPI

TVF

(a) (b)

FIG. 10. (Color online) The bifurcation diagrams near the
bicritical point of SPI (n0 = 4) and TVF disturbances (k	

0 ,Re	
i ) =

(9.217,486.67) in Fig. 3, for (a) k
	
0 > k0 = 9.16 and (b) k

	
0 < k0 =

9.28. The green (light gray) thin, red (medium gray) thin, and blue
(dark gray) medium thick curves correspond to the solutions with
TVF, SPI, and RIB symmetries, respectively. The magenta (medium
gray) thick curves are the TWI, WVF, and WSP type mixed solutions.

the axes of shift-reflection symmetry (gray dashed line in
Fig. 13) alternately are placed for the RIB disturbance in each
quarter axial period, whereas, the symmetry axes where the
TVF disturbance satisfies both reflection and shift-reflection
symmetries are at each half axial period. Therefore, when
we adjust the axial shift value δ to conform to the symmetry
axes of the TVF disturbance and the axes of reflection (shift-
reflection) symmetry of the RIB disturbance, the superimposed
state cannot have shift-reflection (reflection) symmetry. Thus,
in general, the interaction of the odd-cell TVF and RIB
disturbances results in a TWI or WVF solution.

Interactions of a SPI disturbance with n0 = ±5 and a
TVF × 2 disturbance are also studied to see an even case
scenario in the vicinity of the corresponding bicritical point
at (k�

0 ,Re�
i ) = (3.591,478.21) (cf. Fig. 3). The bifurcation

diagrams of the RIB solutions at k0 = 3.5 < k�
0 and k0 =

3.7 > k�
0 are shown in Figs. 14(a) and 14(b), respectively,

where each of the RIB solution branches bridges the TVF
solution branch and the SPI linear critical point. This fact
implies annihilation of the end points of the bridge at the
bicritical point, and therefore, these mixed solution branches
at k0 < k�

0 and k0 > k�
0 are considered to belong to distinct

solution families. Although both of the mixed solutions
have RIB type symmetry and are essentially same as the

 1
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Δ
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FIG. 11. (Color online) The same as in Fig. 10(a) but for a broader
range of Rei .
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(a)                                (b)

(c)                                (d)

(e)                                (f)

FIG. 12. (Color online) The azimuthal vorticity ω at r − rm =
−0.25 for the different flow states indicated in Fig. 11 at Rei = 490.
The horizontal axis represents θ ∈ [0,2π/4], whereas, the vertical
axis represents z ∈ [0,2π/9.16]. The values of Cmax are (a) 131.75,
(b) 189.54, (c) 145.40, (d) 151.66, (e) 211.13, and (f) 113.36. (a) The
SPI solution. (b) The TVF solution. (c) The RIB solution. (d) The
WSP solution. (e) The WVF solution. (f) The TWI solution.

RIB solutions arising from the interaction of the two SPI
linear critical modes being mirror images, their typical flow
characteristics are of interest.

As shown in the schematics (Fig. 16), symmetry axes of the
TVF × 2 disturbances are at the inflow boundaries (negative
vorticity at the upper side and positive vorticity at the lower
side) and the outflow boundaries (positive vorticity at the
upper side and negative vorticity at the lower side). When
a TVF × 2 solution is perturbed by a RIB disturbance so that
the shift-reflection symmetry axes at the inflow boundaries
of the TVF × 2 solution are preserved, one observes the
so-called wavy-inflow-boundary-like structure [Figs. 15(a)
and 16 (top)]. Similarly, when the outflow boundaries of a
TVF × 2 solution and the shift-reflection symmetry axes of
a RIB disturbance coincide, the wavy-outflow-boundary-like
structure emerges [Figs. 15(b) and 16 (bottom)].

RIBTVF (odd)

TVF (odd)

θ

z

RIB

+

+

WVF

TWI

=

=

FIG. 13. (Color online) The schematics of the vortex patterns for
the interactions of TVF and RIB disturbances in the plane of an
unrolled cylinder surface in the annulus. The red (medium gray)
and blue (dark gray) colored regions correspond to positive and
negative azimuthal vorticity ω, respectively. The squares cover one
azimuthal and axial period of the RIB. Horizontal black solid and gray
dashed lines characterize the axes of reflection and shift-reflection
symmetries, respectively. The interaction of a RIB solution with an
odd-cell TVF solution results in either a TWI or a WVF solution.
Note that there are also symmetry axes at the axial boundaries of the
schematics, although we omit them here and in Fig. 16 for the sake
of visibility.

D. TVF-TVF interactions

In this subsection, which concerns the interactions of two
TVF disturbances, all of the solutions are axisymmetric and,
therefore, invariant in the azimuthal direction. The two linear
critical curves of the TVF instabilities, for which seven and
eight cells exist in z ∈ [0,2π/k0], are shown in Fig. 17.
The bicritical point of these instabilities is at (k0,Rei) =
(0.99,478.73).

By choosing k0 = 0.96, we superimpose these TVF dis-
turbances. Note that the mixed solution, which has phases
[ϕ1,ϕ2] = [7k0z,8k0z], can be written in a function of only
one phase ϕ = k0z (see Sec. III B). Figure 18(a) illustrates
the resultant mixed solution branch [thick magenta (medium
gray) curves labeled as (mixed) TVF], which bridges the pure
seven- and eight-cell TVF solution branches [thin green (light

 0.998

 1

 1.002

 1.004

 1.006

 1.008

 470  475  480  485  490

Δ

Rei

RIB

SPI
TVF×2

 470  472  474  476  478  480
Rei

RIB

SPI TVF×2

(a) (b)

FIG. 14. (Color online) The bifurcation diagrams near the bicrit-
ical point of SPI (n0 = 5) and TVF × 2 disturbances (k�

0 ,Re�
i ) =

(3.591,478.21) in Fig. 3 for (a) k0 = 3.5 and (b) k0 = 3.7. The
dot-dashed green (light gray) thin curve represents the TVF × 2
solution, whereas, the solid red (medium gray) thin and blue (dark
gray) medium thick curves correspond to the solutions with SPI and
RIB symmetries, respectively.

043017-9



K. DEGUCHI AND S. ALTMEYER PHYSICAL REVIEW E 87, 043017 (2013)

FIG. 15. (Color online) The azimuthal vorticity ω at r − rm =
−0.25 for the RIB solutions in Fig. 14. (a) (k0,Rei) = (3.5,478.5)
(seems like a wavy inflow boundary) and (b) (k0,Rei) = (3.7,477.4)
(seems like a wavy outflow boundary). The horizontal axis represents
θ ∈ [0,2π/5], whereas, the vertical axis represents z ∈ [0,2π/k0].
The values of Cmax are 17.91 for (a) and 12.93 for (b).

gray) curves labeled TVF × 7 and TVF × 8, respectively].
Figures 19(a)–19(c) show the flow regimes of these solutions
at Rei = 476. Although the mixed solution that has funda-
mental periodicity z ∈ [0,2π/k0] also has TVF symmetry, the
corresponding vortex structure is now modulated and has a

RIB

z

RIB

+

+

TVF (even)

TVF (even)

=

=

RIB (WOB)

RIB (WIB)

θ

FIG. 16. (Color online) The same as in Fig. 13 but for interactions
of TVF × 2 and RIB disturbances. Although both of the superimposed
states in the top and bottom figures for the different axial shift value
δ result in RIB symmetry, again, their vortex structures show distinct
WIB- and WOB-like patterns, respectively.

 460

 480

 500

 520

 540

 0  0.5  1  1.5  2

R
e i

k0

TVF×7TVF×8

FIG. 17. (Color online) Solid curve: The linear critical curves of
TVF × 7 and dot-dashed curve: TVF × 8 instabilities against k0. The
crossing point of these curves is at (k0,Rei) = (0.99,478.73).

fringe-shift-like appearance due to the interference of the pure
cell states. A similar bifurcation scenario has been investigated,
for example, in Ref. [24].

Our numerical method also allows us to consider the
generalized interaction analysis for TVF disturbances with
irrational wave numbers. Figure 18(b) shows the bifurcation

 0.995

 1

 1.005

 1.01

 1.015

 1.02

 1.025

 1.03

 1.035

 1.04

 468  470  472  474  476  478  480  482

Δ

Rei

(mixed) TVF

TVF×7
TVF×8

 1

 1.02

 1.04

 1.06
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Rei

(mixed) dTVF

TVF×√⎯4⎯7

TVF×8
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(b)

FIG. 18. (Color online) The bifurcation diagrams for k0 = 0.96.
The thin green (light gray) curves represent the pure TVF solutions.
Note that the thin solid and dot-dashed green (light gray) curves
in (a), which represent TVF × 7 and TVF × 8 solution branches,
respectively, bifurcate from the corresponding critical curves in
Fig. 17. The mixed solutions between rational and irrational wave
number TVF solutions are indicated by magenta (medium gray) thick
curves in (a) and (b), respectively. Note that the mixed TVF solution
in (a) has phases [ϕ1,ϕ2] = [7k0z,8k0z], whereas, the dTVF solution
in (b) has phases [ϕ1,ϕ2] = [7k0z,

√
47k0z].
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FIG. 19. (Color online) The azimuthal vorticity ω at r − rm =
−0.25,(θ,z) ∈ [0,2π/10] × [0,2π/0.96], and Rei = 476 for the so-
lutions shown in Fig. 18. (a)–(c) correspond to the TVF × 8, TVF × 7,
and mixed TVF solutions in Fig. 18(a), respectively, whereas, (d)
and (e) correspond to the TVF × √

47 and mixed dTVF solutions
in Fig. 18(b), respectively. The symmetry axes of the solutions are
adjusted at z = 0 (bottom of the pictures). The values of Cmax are (a)
18.42, (b) 23.05, (c) 32.58, (d) 12.89, and (e) 31.41. The tics in (a), (b),
and (d) represent the fundamental period of corresponding solutions
2π/(8 × 0.96),2π/(7 × 0.96), and 2π/(

√
47 × 0.96), respectively.

Obviously, the (c) mixed TVF and (e) mixed dTVF have no smaller
fundamental subdivisions.

diagram where the wave number of the seven-cell TVF solution
of Fig. 18(a) is slightly changed to a

√
47 cell state, i.e., the

solid curve of Fig. 18(b) represents the TVF × √
47 solution

branch. As its visualization, Fig. 19(d) shows there exist six
cells and an additional incomplete cell in z ∈ [0,2π/k0]. The

(a)
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ω
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FIG. 20. (Color online) The phase portrait of azimuthal velocity
v and vorticity ω. The radial position is at r − rm = −0.25, and
the range of z is [0,40 × 2π/0.96]. Although the thicknesses of the
curves are replaced for the sake of visibility, the curves in (a) and
(b) correspond to the solutions in Figs. 18(a) and 18(b), respectively.
Therefore, in (a) [(b)], the thick solid and dot-dashed green (light
gray) curves indicate TVF × 7 (TVF × √

47) and TVF × 8 solutions,
respectively, whereas, the magenta (medium gray) curve illustrates
the mixed TVF (dTVF) solution.

bifurcation diagram also shows the detachment of the mixed
solution branch [labeled as (mixed) dTVF], which has phases
[ϕ1,ϕ2] = [7k0z,

√
47k0z] from the TVF × 8 solution branch.

This mixed solution essentially has dTVF symmetry because
there is no reduction to a one-phase TVF state in contrast to the
rational wave number case. Indeed, as shown in Fig. 19(e),
the flow field of the mixed solution is no longer periodic in
z ∈ [0,2π/k0] because of the double periodicity of the dTVF
symmetry.

In order to see this particular spatial structure of the solution
more clearly, the azimuthal velocity v and vorticity ω are
combined in Fig. 20 where the axial range is extended to
z ∈ [0,40 × 2π/k0]. For the pure TVF solutions, drawn by the
green (light gray) curves, a pair of vortices forms a round of
the curve in the figure. In contrast, for the former mixed TVF
solution presented in Fig. 18(a), the corresponding magenta
(medium gray) curve forms a closed loop structure with several
rounds [cf. Fig. 20(a)], whereas, for the latter mixed dTVF
solution presented in Fig. 18(b), the corresponding spiraling
curve never returns to its starting point, finally filling the whole
torus projected in the (v,ω) space [cf. Fig. 20(b)].

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we elucidated the interactions of various
TVF and SPI solutions of Taylor-Couette flow with different
azimuthal and axial wave numbers. The bifurcation curves of
mixed solutions are captured by our Newton solver, which
can compute any solution with up to two phases, using
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superimposed linear critical solutions as an initial guess in
the vicinity of the bicritical points. We considered rational
and irrational axial wave numbers of interacting contributions
to the mixed state providing a theoretical discussion for the
classification of resultant solutions. The obtained mixed solu-
tion branches, which result in sub- or supercritical secondary
bifurcation or footbridge solutions, continue to exist beyond
the weakly nonlinear parameter ranges.

When linear critical curves of two SPI modes with different
azimuthal wave numbers intersect at a particular parameter
choice, there exist four linear critical SPI modes, i.e., a pair
of degenerate left- and right-winding SPI solutions for each
SPI linear instability. Restricting attention to the interactions
of two SPI modes, we obtained all six possible combinations
of them. These mixed solutions result in two RIB solutions
and two WSP solution pairs, each of which are degenerate
in the bifurcation diagram. The WSP solutions include the
superpositions of the SPI modes with equal signs of helicity,
which is reported here. When the interaction happens between
SPI solutions with the irrational wave number case, a parallelo-
gram shape calculation domain is used to describe the resultant
spiral dominated pattern with relative axial periodicity.

We calculated various interactions between SPI and TVF
modes as the SPI-SPI interaction case. In this case, we found
it is possible to calculate a RIB-TVF interaction, which is a
special case of the SPI-SPI-TVF interaction. The symmetries
of the resultant mixed solutions depend on whether the ratio
of axial wave numbers of the RIB and TVF is an odd or even
integer.

At the bicritical point, we have confirmed WVF and TWI
type solutions bifurcate for the odd case, whereas, two RIB
type solutions, which have WIB- and WOB-like structures,
bifurcate for the even case. These scenarios are consistent with
those which have been described in weakly nonlinear theory
at the TVF-SPI bicritical point [2–6]. By using schematics of
the superpositions of the RIB and TVF modes, comprehensive
explanations are given for these interactions.

We also investigated TVF-TVF interactions, wherein,
axially inhomogeneous Taylor vortex patterns are observed.
Our approach allows us to calculate spatially doubly periodic
solutions which arise from an interaction between two TVF
solutions having irrational wave numbers.

All of the investigations above prove our phase symmetry
analysis, and the Newton solver helps to obtain finite-
amplitude solutions whose flow patterns are of interest. This
strategy is sometimes useful for providing a comprehensive
physical explanation for the structure of the complicated mixed
solution when its connection to linear instability is revealed.
As an example, we reproduce the SPI and RIB type low axial
wave number solutions discovered in Ref. [20] in our code as
in Fig. 21. Although they failed to trace their RIB type low
axial wave number solution branch for relatively small Rei , we
can complete the bifurcation scenario with our code. As can
be seen in the figure, we understand this solution is originated
from the interaction of TVF × 2 and TVF × 4, respectively,
and SPI (azimuthal wave number n0 = 3), which are almost
bicritical in this axial wave number choice.

Our strategy provides a systematic approach to cre-
ate solutions with axially large scale structures, which
would be responsible for sustaining the large scale spiral
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FIG. 21. (Color online) The variation in CCF-normalized torque
� for various solutions at (η,Reo,k0) = (0.883,−1200,2.5). The low
axial wave number SPI (n0 = 3) and RIB (n0 = 3) solutions in
Ref. [20] are drawn by thin solid red (medium gray) and thick solid
blue (dark gray) curves, respectively, with arrow indications. The
small segment of thick blue (dark gray) curve bifurcated from the
CCF, black line at � = 1, is also a RIB type solution. The solid
and dot-dashed green (light gray) curves represent the TVF × 2 and
TVF × 4 solutions. The open circles in the enlarged picture indicate
bifurcation points and are omitted in the main figure for the sake
of visibility. There are three linear critical points of the CCF, which
correspond to TVF × 4, TVF × 2, and SPI (n0 = ±3) from left to
right. After the TVF × 4 solution branch is bifurcated from the CCF,
the bifurcation of the TVF × 2 solution branch arises very soon from
the TVF × 4 solution branch, and thus, we cannot separate these
bifurcation points in the present scale.

turbulence [15–19]. In these experimental and numerical
results, the observed pattern has a chaotic motion rather than
an equilibrated state. Thus, borrowing the idea of dynamical
systems theory applied in the shear-flow transition problem,
our solutions, most of which may be unstable, are likely to
form the “backbone” of this dynamics.

We can compare our solutions and simulation results with
Ref. [18] for Ro = −1200. When Ri is slightly above the
relaminarization threshold, a modulated spiral pattern, called
interpenetrating spirals, can be found. Some of the transient
and spatially local elements of the modulated pattern resemble
the two-phase solutions we investigated. As increasing Ri ,
the flow regime evolves into a striping large scale laminar-
turbulent structure. The nonlinear fringe-shift, which will
become more evident with the further introduction of mode
interactions, is considered to be one of the possible physical
explanations to emerge from this laminar-turbulent coexisting
pattern. Another feature of the spiral turbulence is that it is
triggered by subcritical transition for higher |Ro|. Although
the mixed solutions presented in this paper are mostly
settled within the linear unstable parameter region, one can
expect that solutions with higher |Ro| and larger structures
emerge in a highly subcritical manner. The axial relative
periodicity would help this investigation as we illustrated in
Sec. I.

There would also be some connections to the similar
turbulent stripe simulation of the plane Couette flow in the
tilted rectangular domain in Ref. [25]. Further work might be
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able to continue the finite-amplitude solution branches of the
plane Couette flow discovered in the rectangular domain (e.g.,
Ref. [9]) for the tilted rectangular domain. Recently, it has
been found that spanwise (axial) mean flow is indispensable
to stripe turbulence [26]. Even when the starting solution in
the rectangular domain does not have spanwise mean flow due
to axial symmetry, the continuation for the tilted rectangular
domain breaks the symmetry, and therefore, spanwise mean
flow must be produced. We would be able to introduce
modulation to the solution in the tilted domain by seeking
the bifurcating solution branch, via Floquet stability analysis,
to this subspace.

Finally, we remark that the phase symmetry analysis
introduced in Sec. III can be applicable to bifurcations of
more than three-phase mixed states where, typically, phase
dependence cannot be accommodated in two spatial periodic

directions, and thus, there is a time-dependent pattern in
the sense of the spatially averaged field. Our restriction up
to two phases can be removed when we switch to a more
advanced numerical strategy, e.g., the Newton-Krylov ap-
proach [27,28]. Returning to the Taylor-Couette flow problem,
such time-dependent coherent patterns have been observed in
experiments and simulations [8,29,30]. More than three-phase
solutions, bifurcating from the bicritical points, which are
sometimes predicted in weakly nonlinear theory, are likely
to elucidate these complex pattern formation phenomena.
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