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Islands of instability for growth of spiral vortices in the Taylor-Couette system
with and without axial through flow
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We present numerical calculations of the linearized Navier-Stokes equations for axially extended and axially
localized spiral structures in the Taylor-Couette system. The eigenvalue surface for spiral vortices with azimuthal
wave number M = 2 shows significantly more structure than that for vortices with M = 0 and 1. Islands are
found in parameter space where axially periodic vortex perturbations can grow. Bicriticality of different axial
wave numbers is observed. Furthermore, parameter islands of absolute instability are found where wave packets
consisting of near-critical extended perturbations can grow and expand via oppositely moving fronts. Some
results are compared with those of the Ginzburg-Landau approximation.
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I. INTRODUCTION

The Taylor-Couette system [1–3] consisting of a viscous,
isothermal fluid confined in the annulus between two con-
centric, independently rotating cylinders is a prototypical
example for bifurcation theory in hydrodynamics. It is one of
the simplest driven nonlinear dissipative systems that shows
spontaneous pattern formation out of an unstructured basic
state [1,3–5]. For the axial periodic boundary conditions that
we consider here, the stationary, axially, and azimuthally
homogeneous basic flow consists of a superposition of the
circular Couette flow (CCF) driven by the rotating cylinders
and of the annular Poiseuille flow (APF) generated by an
externally imposed axial through flow [4,6].

For sufficiently strong rotation speeds, spiral vortices with
azimuthal wave numbers M �= 0 occur in the basic state via
a symmetry-breaking Hopf bifurcation as a result of a linear
instability [5,7–9]. These spirals are traveling waves in the
axial direction and rotating waves in the azimuthal direction.
The primary bifurcation to such periodic vortex structures has
been the aim of many linear stability analyses of the basic state
[9–14]. Moreover, an investigation of convective and absolute
instability is presented in [15].

In this paper, we investigate extended as well as localized
linear perturbations with azimuthal wave number M = 2 in
a wide range of through flow and inner and outer cylinder
velocities. This is done by numerically solving the eigenvalue
problem of the linearized Navier-Stokes equations (NSE)
for real and for complex axial wave numbers. We use a
shooting method with a fourth-order Runge-Kutta algorithm
to determine the radial dependence of the eigenfunctions.
Furthermore, the boundaries of absolute and convective
instability and the characteristic properties of linear vortex
fronts are determined by a saddle-point analysis of the complex
dispersion relation of the NSE evaluated for complex axial
wave numbers [16–18]. These results are compared also with
predictions of the classical Ginzburg-Landau equations (GLE)
[4,19].

For M = 2 spiral vortices (2 SPI), we find for certain
parameters a peculiar behavior that has not been seen for
either M = 0 Taylor vortex perturbations or M = 1 spirals
that have been studied extensively [5,8–14,20]: (i) “islands”
in parameter space for the growth of axially periodic 2 SPI

structures that are surrounded by a stability regime of the basic
state. Such islands have already been observed in other settings
[21]; (ii) “islands” of absolute instability for the growth of
near-critical localized wave packets of 2 SPI perturbations
that are enclosed by convective instability.

These effects are a consequence of a rather complex
eigenvalue surface of the 2 SPI solutions of the linear NSE
and of the somewhat unusual behavior of the relevant saddle
nodes of the dispersion relation, neither of which is captured
by the GLE.

The first part of the paper concerns the marginal and critical
bifurcation thresholds for extended vortex structures with
different azimuthal wave numbers M � 2. In the second part,
we investigate localized wave packets that consist in particular
of near-critical extended 2 SPI perturbations. We focus on the
spatiotemporal behavior of their fronts using a saddle-point
analysis and we determine the boundary between convective
and absolute instability of the basic flow against these 2 SPI
perturbations.

II. SYSTEM

We present numerical results for vortex perturbations
in axially unbounded Taylor-Couette systems with counter-
rotating cylinders and externally imposed axial flow. The gap
width between the outer cylinder of radius r2 and the inner
one of radius r1 is d = r2 − r1. With infinitely long cylinders,
the only relevant parameter characterizing the geometry is the
radius ratio η = r1/r2. The latter is fixed here to be η = 0.5.

The fluid in the annulus is taken to be isothermal and
incompressible with kinematic viscosity ν. To characterize
the driving of the system, we use the Reynolds numbers

R1 = r1�1d/ν, R2 = r2�2d/ν. (2.1)

They are the reduced azimuthal velocities of the fluid at the
inner and outer cylinder, respectively, where �1 and �2 are
the respective angular velocities of the cylinders. The inner
one is always rotating counterclockwise so that �1 and R1 are
positive.

046308-11539-3755/2011/84(4)/046308(12) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.84.046308
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An externally imposed axial through flow is measured by
the axial Reynolds number

Re = d

ν
〈w〉, (2.2)

where the mean axial velocity 〈w〉 averaged over the annular
cross section describes the total through flow.

We use also the relative control parameters

μ = R1

R1,c(Re)
− 1, ε = R1

R1,c(Re = 0)
− 1, (2.3)

measuring the relative distance of the inner Reynolds number
R1 from the critical onset R1,c of the axially extended spiral
vortex or Taylor vortex patterns in the presence and in
the absence (Re = 0) of through flow, respectively. In this
notation,

μc = 0 and εc(Re) = R1,c(Re)

R1,c(Re = 0)
− 1 (2.4)

is the critical threshold for the onset of the vortex flow in
question. The relation between μ and ε is

μ = ε − εc(Re)

1 + εc(Re)
. (2.5)

In the following, we scale positions by the gap width d, the
velocity u by the velocity r1�1 of the inner cylinder, time t

by the momentum diffusion time d2/ν across the gap, and the
pressure p by ρr1�1ν/d, with ρ denoting the constant mass
density of the fluid. Furthermore, we decompose the velocity
field

u = uer + veϕ + wez (2.6)

into radial (u), azimuthal (v), and axial (w) components using
cylindrical coordinates r, ϕ, and z.

The basic flow state ug that is realized for Reynolds numbers
R1 below the thresholds for the onset of Taylor and spiral
vortex flow is rotationally symmetric, axially homogeneous,
and constant in time. It consists of a linear superposition of
circular Couette flow in the azimuthal direction, eϕ , and of
annular Poiseuille flow in the axial direction, ez,

ug = vCCF(r)eϕ + wAPF(r)ez (2.7)

without any radial component. Here

vCCF(r) = Ar + B/r (2.8)

and

wAPF(r) = Re
r2 + C ln(r) + D

E
, (2.9)

with constants A–E given in Ref. [20].
The Navier-Stokes equations for the deviation fields u and

p from the above-described basic state read after linearization
in the deviations

∂tu = ∇2u − R1(ug · ∇)u − R1(u · ∇)ug − ∇p. (2.10)

We expand the solution of Eq. (2.10) into azimuthal and
axial Fourier modes

u(r,ϕ,z,t) =
∑

m,n

ûm,n(r,t)ei(mϕ+nkz). (2.11)

Here k is the axial wave number, which is taken to be positive.
The time dependence of the complex mode amplitudes is
exponential,

ûm,n(r,t) = ûm,n(r)eσ t , (2.12)

with complex characteristic exponents

σ = Re(σ ) + i Im(σ ) = γ − iω (2.13)

that depend in general on the mode indices, the wave number,
and the three Reynolds numbers. Here γ is the growth rate and
ω is the characteristic frequency of the mode in question.

III. AXIALLY EXTENDED VORTEX STRUCTURES

In this section, we consider perturbations of the basic state
in the form of axially extended, periodic vortex structures with
axial wave number k and azimuthal wave number M = 0,1,2.
The critical modes are n = ±1,m = M = 0 for rotationally
symmetric Taylor vortex flow (TVF) and n = ±1,m = nM

for left-handed spiral vortex flow (LM SPI) with azimuthal
wave number M , and n = ±1,m = −nM for right-handed
spiral vortex flow (RM SPI) with azimuthal wave number M .
In Fig. 1, we show the structure of TVF, L1 SPI, and L2 SPI
schematically with the help of isosurfaces of the azimuthal
vorticity.

Because of the z → −z symmetry of the Taylor-Couette
system, we often discuss here only L SPI. Without through
flow, L SPI and R SPI are mirror images of each other.
Furthermore, in the presence of an axial through flow with
Reynolds number Re, the physical properties of R SPI
solutions of the NSE (2.10) are tied to those of L SPI
solutions with the invariance of the NSE under axial reflection,
(z,w,Re) → (−z,−w,−Re); cf. [20] for more details. Thus,
an R SPI at a Reynolds number Re behaves like the mirror
image of an L SPI at −Re.

(a)(a) (b) (c)

FIG. 1. (Color online) Isosurfaces of the azimuthal vorticity field
∂zu − ∂rw for TVF (a), L1 SPI (b), and L2 SPI (c) close to their
respective onsets. Here, Re = 0 so that the R SPI are the axial mirror
images of the corresponding L SPI structures. For finite through
flow, an R SPI at Reynolds number Re is the mirror image of the
corresponding L SPI at −Re.
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FIG. 2. (Color online) Marginal stability curves of the basic state
against vortex perturbations at R2 = 0 with azimuthal wave numbers
M = 0, 1, 2 for Re = 0 (a) and Re = −6 (b). For the latter, there is
an isolated island of instability against L2 SPI. Vertical dotted lines
indicate the critical wave numbers for 2 SPI as indicated.

A. Axial through flow

We first consider in Fig. 2 the marginal stability curves of the
basic state against vortex perturbations with azimuthal wave
numbers M = 0, 1, and 2 and fixed outer cylinder, R2 = 0.
These stability curves are the bifurcation thresholds for TVF,
1 SPI, and 2 SPI, respectively. Since these extended vortex
structures typically bifurcate forward, the marginal stability
curves give reliable information for what parameters one can
expect to find such structures in experiments. Finite axial
through flow lifts the symmetry degeneracy of L SPI and R SPI
as described in detail in [6,20]. Furthermore, and in addition,
the L2 SPI curve consists at Re = −6 of two separate parts
defining disjunct (gray-shaded) regions with positive growth
rates for L2 SPI modes.

In order to elucidate the origin of the two disconnected
marginal stability curves related to L2 SPI perturbations, we
present in Fig. 3 the surfaces of the linear growth rates γ

of TVF, L1 SPI, and L2 SPI modes over the k-R1 plane for
R2 = 0,Re = −6. The marginal stability thresholds are the
γ = 0 isolines of these “mountain landscapes.” In contrast to
the monotonically varying surfaces for TVF and L1 SPI modes
in (a) and (b), the mountain landscape for the L2 SPI mode in
Fig. 3(c) has a saddle and a small “hill.” Parts of the hill lie
above the γ = 0 isoline, which is shown there by a thick (red)
curve for better visibility.

The shape of this mountain landscape for the L2 SPI mode
is almost independent of Re and R2; cf. below. Varying Re
simply shifts the whole mountain toward lower or higher γ .
In this way, the island in Fig. 2(b) disappears for sufficiently
large negative Re when the top of the hill gets lowered below
γ = 0. On the other hand, the island gets connected with the

FIG. 3. (Color online) Surfaces of the linear growth rate γ over
the k-R1 plane for TVF (a), L1 SPI (b), and L2 SPI (c). In each case,
R2 = 0 and Re = −6 as in Fig. 2(b). The red (gray) γ = 0 isolines
identify the marginal curves. The characteristic shape of the γ surface
for L2 SPI modes causes the corresponding marginal curve to split
into two separated parts; cf. Fig. 2(b).

main gray instability region of Fig. 2(b) when for sufficiently
small negative Re the saddle in Fig. 3(c) is lifted above γ = 0.

This is illustrated in Fig. 4. There we show marginal
stability surfaces, γ = 0, for L2 SPI modes in k-R1-Re
parameter space at R2 = 0 (a1) and in k-R1-R2 space at
Re = −6 (b1). In (a2), we show for R2 = 0 several marginal
curves in the k-R1 plane for different Re. Similarly, in (b2)
marginal curves for Re = −6 are shown for different R2. The
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FIG. 4. (Color online) Marginal stability surfaces, γ = 0, for L2 SPI modes in k-R1-Re parameter space at R2 = 0 (a1) and in k-R1-R2

space at Re = −6 (b1). The surfaces separate the parameter spaces into regions with γ < 0 (above the surfaces) and regions with γ > 0 (below
the surfaces). Marginal curves in the k-R1 plane are shown in (a2) for different Re at R2 = 0 and in (b2) for different R2 at Re = −6. The thick
red (gray) γ = 0 isolines in (a1) at Re = −6 and in (b1) at R2 = 0 correspond to the respective thick black lines in (a2) and (b2), respectively.
The variation of the critical points (kc,R1,c) with Re and R2 is shown in (a2) and (b2), respectively, by full red (gray) lines that are labeled
accordingly. The jump of the critical point is indicated by dotted red (gray) lines.

thick red (gray) γ = 0 isolines in (a1) at Re = −6 and in (b1)
at R2 = 0 correspond to the respective thick black lines in
(a2) and (b2). The variation of the critical points (kc,R1,c)
with Re and R2 is shown in (a2) and (b2), respectively,
by full red (gray) lines that are labeled accordingly. The
jump of the critical point is indicated by dotted red (gray)
lines.

Consider first how the structure of L2 SPI marginality in
parameter space changes at fixed R2 = 0 when Re varies.
Decreasing Re from zero to negative values, i.e., moving
vertically upward in Fig. 4(a1), the saddle occurs at Re ≈
−5.1. At this isoline, the part of the mountain in Fig. 4(a1) that
is protruding to the lower right is disconnected from the main
part. So, the downward bulging marginal curves in Fig. 4(a2)
pinch off at Re ≈ −5.1 and form an island in the lower left of
Fig. 4(a2). Decreasing Re to more negative values, i.e., moving
vertically further upward in Fig. 4(a1), one reaches the top of
the hill at Re ≈ −6.4, and the island in Fig. 4(a2) shrinks to a
point and then disappears.

If one fixes the through flow, say, at Re = −6 and varies the
outer Reynolds number instead, as done in Fig. 4(b), then one
observes practically the same structural changes in the L2 SPI
marginality locations in parameter space as for the variations of
Re in Fig. 4(a). Thus, changing the through flow and changing

the rotation rate of the outer cylinder have similar effects on
the bifurcation thresholds of L2 SPI.

This similarity in behavior when Re or R2 is changed holds
also for the critical values kc,R1,c, and ωc of L2 SPI that are
shown in Fig. 5. Note their discontinuities (dotted vertical lines
in Fig. 5) when the island structure disappears: in Figs. 5(a)
and 4(a) at Re ≈ −6.4 and in Figs. 5(b) and 4(b) at R2 =
2.3. The striped bars in Fig. 5 mark the parameter intervals
(−6.4 < Re < −5.1 and −5.2 < R2 < 2.3, respectively) in
which the marginal curves display an instability island that is
surrounded by stability and that is separated from the main
instability region in the k-R1 plane in Fig. 4.

Without through flow (Re = 0), L and R SPI are symmetry-
degenerated so that their critical values kc and R1,c are the same
and their frequencies differ only by a sign. The external axial
through flow lifts the degeneracy [20,22], e.g., the onsets of
upstream (downstream) propagating SPI are shifted toward
larger (smaller) R1. Thus, in the Re range shown in Fig. 5, the
bifurcation thresholds for L1 and L2 SPI lie above those of R1
and R2 SPI, respectively.

The critical axial wave numbers for L2 SPI (Fig. 5) behave
significantly different from those of R2 SPI or L1 and R1 SPI.
This also holds for the critical Reynolds numbers R1,c and
the critical frequencies ωc (c). All but the L2 wave numbers
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FIG. 5. (Color online) Critical axial wave numbers kc, critical
Reynolds numbers R1,c, and critical frequencies ωc for TVF, 1 SPI,
and 2 SPI vs axial through flow Re (a) and R2 (b). The striped bars
mark the intervals in which the L2 SPI marginal curve is split into
two separated parts so that an isolated instability island for L2 SPI
modes exists. When the island disappears, the critical values undergo
a jump indicated by the dotted vertical lines.

increase with increasing |Re|. So, e.g., for R2 = 0 and negative
Re, the upstream (in the positive z direction) propagating L2
SPI selects a wave number that first increases with the axial
“head wind.” Then, at Re ≈ −6.4, it jumps to a significantly
larger wave number so that thereafter the critical wave number
for the L2 SPI mode is larger than that for the R2 SPI. This is
a significant difference from the M = 1 case, in which kc(R1
SPI) always lies above kc(L1 SPI), independently of Re or R2.

B. Counter-rotating cylinders

Roughly speaking, the γ surface of Fig. 3(c) moves as a
whole also when R2 is varied at fixed Re in a way that is quite
similar to the above discussed situation in which one varies Re
at fixed R2. In particular, one can find an interval of R2 values
where the saddle in Fig. 3(c) lies below the γ = 0 level while
part of the hill lies above it so that the γ = 0 isoline consists
of two separate curves in the k-R1 plane. For Re = −6, this
situation with an instability island in the k-R1 plane that is
enclosed by the marginal curve occurs for −5.2 < R2 < 2.3.
So, one simply has to vary either Re or R2 in order to move
the γ = 0 level into the area between the saddle and the top of
the hill.

However, we want to stress that the evolution scenarios of
the γ landscapes for L2 SPI perturbations as described above
with the island formation by the marginal L2 curves occur only
when the through flow is sufficiently strong, namely, only when
Re � −0.1. We found that for Re > −0.1 there exists no R2

with isolated islands for L2 SPI growth in the k-R1 plane.
In Fig. 5(b), we have chosen as a representative example

Re = −6, which lies within the above-mentioned Re interval.
We show the critical axial wave number kc, Reynolds number
R1,c, and frequency ωc versus R2 for TVF, 1 SPI, and 2 SPI.

The striped regions mark the interval in which the L2 SPI
marginal curve is split into two separate parts and in which
an isolated instability “island” for L2 SPI modes exists in the
k-R1 plane.

While the critical quantities of TVF, L1 SPI, R1 SPI, and R2
SPI show as functions of R2 the smooth “classical” behavior
in Fig. 5(b), the critical curves for the L2 SPI mode show
jumps at R2 ≈ 2.3 in analogy to the situation in Fig. 5(a) that
is discussed in the preceding section. In both cases, the jumps
occur when the islands enclosed by the marginal stability
curves in the k-R1 plane disappear. The striped R2 interval
in Fig. 5(b) represents the R2 values between the saddle and
the local maximum at the top of the hill in the plot of Fig. 4(b1)
showing the γ = 0 isosurface in k-R1-R2 space.

Last in this section, we investigate the characteristic critical
velocities. Figure 6(a) displays the critical axial phase velocity
wph = ωc/kc of extended vortex structures resulting from
the critical quantities shown in Fig. 5(a). With decreasing
through flow, i.e., with Re becoming more negative, the
critical phase velocities of TVF, L1 SPI, R1 SPI, and R2
SPI decrease smoothly while that of L2 SPI first decreases
but then increases. This is somewhat peculiar since for the
axially upward propagating L SPI in the downward directed
through flow, the strength of the “headwind” increases when
Re becomes more negative. Nevertheless, the phase velocity of
L2 SPI remains upward directed with increasing magnitude.
Furthermore, wph of L2 SPI shows an upwards jump when
the isolated instability island in the k-R1 plane disappears at
Re ≈ −6.4.

Figure 6(b) shows the corresponding critical group ve-
locities wg = ∂ω

∂k
|c. They all decrease smoothly when the

downward directed through flow becomes stronger. Note,
however, that the group velocity of L2 SPI perturbations
undergoes at Re ≈ −6.4 a jump to a positive value when the
critical wave number in Fig. 5(a1) jumps to a significantly
larger one. This implies that for Re < −6.4, the center of a
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FIG. 6. (Color online) Critical axial phase velocity wph = ωc/kc

(a) and group velocity wg = ∂ω

∂k
|c (b) of TVF and SPI vs Re for

R2 = 0. The striped bars mark the interval in which the L2 SPI
marginal curve is split into two separated parts so that an isolated
instability island for L2 SPI modes exists. When the island disappears,
the critical values undergo a jump indicated by the dotted vertical
lines; see also Fig. 5(a).
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wave packet consisting of the new near-critical L2 SPI modes
with the larger wave numbers travels upstream, i.e., opposite
to the through flow.

IV. LOCALIZED STRUCTURES

We now consider the spatiotemporal behavior of axially
localized vortex structures consisting of linear wave packets
of extended L SPI modes and of linear L SPI fronts. As
in Sec. III, we discuss here explicitly the L SPI structures.
The corresponding R SPI structures are related to them
via the symmetry operation (z,w,Re) → (−z,−w,−Re) [20].
Here the nonlinear behavior of initially infinitesimal localized
perturbations might be quite different from the linear one. For
example, nonlinear SPI fronts could display different dynamics
from the linear ones. In addition, Ekman vortex modes that
are present in finite systems can be expected to influence the
localized SPI structures.

The analysis is based upon the knowledge of the complex
temporal eigenvalue σ (Q) = γ (Q) − iω(Q) of the vortex
mode

u ∝ ei(Qz+mϕ)+σ t (4.1)

with the azimuthal wave number m in question. This eigen-
value of the NSE (2.10) has to be evaluated with the above
mode ansatz as a function of the complex axial wave number
Q = k − iK . Here, as before, k is the real axial wave number
and K denotes the axial spatial growth rate of u (4.1). Inserting
the ansatz (4.1) into the NSE (2.10) allows us to evaluate the
eigenvalue σ (Q), e.g., with a shooting method as described in
Ref. [20].

For comparison with the dispersion relation σ (Q) of the
NSE, we also analyzed the approximate dispersion relation
σGLE(Q) of linear vortex modes following from the linear
Ginzburg-Landau amplitude equation (GLE) [4],

τ0(∂t + wg∂z)A = [
(1 + ic0)μ + (1 + ic1)ξ 2

0 ∂2
z

]
A (4.2)

for the axially and temporally slowly varying complex am-
plitude A(z,t) of a critical vortex mode ∝ei(kcz+mϕ−ωct). One
obtains [20]

σGLE(Q) = −iωc − i(Q − kc)wg

+ (1 + ic0)
μ

τ0
− (1 + ic1)

ξ0
2

τ0
(Q − kc)2. (4.3)

The linear Ginzburg-Landau coefficients wg, τ0, ξ0, c0, and c1

that enter into the above dispersion relation (4.3) are evaluated
at criticality, γc = 0,Q = kc [20]. Like kc and ωc, they depend
also on m, R2, and Re. This dependence is not indicated
explicitly here.

A. Convective and absolute instability

Concerning the linear growth and decay behavior of vortex
perturbations of the basic flow state, one has to distinguish
between three regimes: In the absolutely stable regime, any
perturbation is damped. In the convectively unstable regime,
some axially periodic, i.e., extended perturbations with wave
numbers out of a band with finite width can grow together with
their wave-packet superpositions. However, both fronts of the
packet move in the same direction so that it is blown out of the

system while its amplitude grows. In the absolutely unstable
parameter region, the packet grows and expands when its two
fronts move in opposite directions.

Thus, the transition from the convectively unstable to the
absolutely unstable regime of the basic flow state against
growth of spatially localized perturbations with a particular
azimuthal wave number and with near-critical axial wave
numbers k is accompanied by the reversal of the propagation
direction of one of both fronts of a wave-packet perturbation
in the laboratory frame. In the convectively unstable regime,
both front velocities and the group velocity of the wave packet
have the same direction so that the wave packet is blown out of
the system according to the linear dynamics. In the absolutely
unstable regime, however, one of the front velocities is directed
oppositely to the other and the signs of the front velocities
are different (cf. Sec. IV B below). Thus, in the absolutely
unstable regime, the initially localized vortex perturbation
expands and grows in both axial directions. At the boundary
between both regimes, one front is stationary in the laboratory
frame.

In order to find this boundary, which is indicated in the
following by the index “c-a,” we use a saddle-point analysis
for σ (Q) as well as for σGLE(Q). The necessary saddle-point
conditions of a nongrowing and nontraveling front in the
laboratory frame [4,20,23] read

Re σ (Q)|Qs,μs
= 0,

dσ (Q)

dQ

∣∣∣∣
Qs,μs

= 0 (4.4)

for a saddle of σ (Q) that is located at Qs = Qc-a with μs =
μc-a [23]. The solution of Eq. (4.4) at fixed m, Re, and R2

yields μc-a , i.e., R1,c-a and kc-a,Kc-a,ωc-a .

1. Saddle points and fronts

We investigate here the saddle points for m = 2. The sad-
dles that are of interest for our stability analysis lie on curves
in k-K-R1 space that intersect the marginal stability surface
R1,stab(k,K). There, perturbations with the spatial variation of
exponential fronts of the form ei(Qz+mϕ) = ei(kz+2ϕ)eKz have
zero temporal growth rate, γ = 0. We first regard in this section
the saddle curves that evolve out of the critical point like the
curves labeled I and II in Fig. 7 for the parameter combination
R2 = 0,Re = 0 as a representative example. Thereafter, we
briefly discuss other saddle points that may occur elsewhere
in k-K-R1 space, e.g., for K �= 0 like the one labeled III in
Fig. 7.

In Fig. 7, the critical point (kc,K = 0,R1,c) is marked by
a filled circle. There, a pair of saddles always occurs, and
close to the critical point they have different signs in K , i.e.,
they characterize fronts of type + (saddle I in Fig. 7) and −
(saddle II in Fig. 7). The two fronts enclose as envelopes
the two sides of wave packets that consist of near-critical
extended L2 SPI modes. For more details concerning fronts of
the form ei(kSz−ωSt+mϕ)eKS (z−wSt) in the laboratory frame that
are represented by a particular saddle S, see Sec. IV B and [20].

For the parameters of Fig. 7, the velocity wII of the −
front labeled II is always positive so that this envelope of the
wave packet continues to propagate axially upward when R1 is
increased beyond R1,c. The + front labeled I, however, changes
twice its propagation direction with increasing R1: between
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FIG. 7. (Color online) Saddle points and front properties of L2
SPI perturbations for R2 = 0, Re = 0. Curves labeled I, II, and III
refer to three different saddle points of σ (Q) + iwF Q describing
fronts; cf. Sec. IV B. Here, I and III describe + fronts with K >

0 while II represents a − front with K < 0. The saddle locations
projected onto the k-R1 plane are shown in (a) together with the
marginal stability curve for extended M = 2 SPI perturbations (full
black line). The variation of the spatial growth rates K of the fronts
with k is shown in (b). (c) gives the front velocities wF and (d) the
temporal growth rates γ at the respective saddle location as functions
of R1. The critical point (kc,R1,c,γ = 0,K = 0) is marked by a filled
circle. At the points labeled A and B, the velocity wF of the + front
I changes sign. Front III reverts its propagation direction at point C.

the critical point (filled circle) and point A (R1 = 134.9) wI

is positive, between A and B (R1 = 189.4) it is negative, and
then wI is again positive beyond point B as wII. Thus, in the
interval between R1,c and A, the basic flow is convectively
unstable against localized L2 SPI perturbations. Then, at A
the system enters into the absolutely unstable regime. But,
most interestingly, beyond B the system reenters again the
convectively unstable regime since the + and − fronts I and
II both move axially upward again. To summarize, points A

and B mark stability boundaries between convectively and
absolutely unstable regimes against L2 SPI perturbations with
wave numbers k that are close to the critical one, kc.

For sufficiently large negative Re, however, both fronts of a
wave packet that develops out of critical L2 SPI perturbations
move first, i.e., for near-critical values of R1 axially downward
into the direction of the through flow. Then, one enters with
increasing R1 the absolutely unstable regime when the − front
changes its propagation direction and moves upward against
the “wind” of the through flow. Finally, for even larger R1, the
+ front reverts its propagation direction so that with both fronts
now moving axially upward one enters again the convectively
unstable domain.

Besides the saddles that originate at the critical point
(kc,K = 0,R1,c), there exist for other control parameters
further saddles of σ (Q) + iwF Q at other Q. They represent
L2 SPI fronts with other front characteristics for perturbations
that grow or decay in the laboratory frame under the respective
front. For the parameters that we have investigated here,
we always found other fronts under which other L2 SPI
perturbations other than those described by saddles I and II
would grow out of the basic state at large R1. This holds
in particular for the convectively unstable parameter domain
at large R1 defined by the aforementioned fronts I and II.
Thus, the reappearance of the convectively unstable behavior
at larger R1 strictly refers only to saddles I and II originating
at the critical point. We have chosen here saddle III in Fig. 7
as a representative for all the other ones.

The + front represented by saddle III changes its prop-
agation direction at point C (R1 = 187.8). Below this value
of R1, spatially bounded L2 SPI perturbations characterized
by saddle III with the large wave numbers k > 5 shown in
Fig. 7(b) are blown out of the system under the axially upward
moving front III. However, for R1 values beyond point C, the
front III moves axially downward so that under the envelope of
this + front, L2 SPI perturbations expand axially downward.
Thus, according to the linear dynamics investigated here,
large-k L2 SPI structures that are originally spatially bounded
by the envelope of the + front III will expand beyond point C
to fill the whole system.

Finally, we should like to mention that the changes in the
propagation direction of the + fronts I and III at points A and
C, respectively, seem to be unrelated. For other values of the
control parameters R2 and Re, the R1 values of A and C differ
more than for the case of Fig. 7. Furthermore, the appearance
of saddle III close to R1,c in Fig. 7(a) seems to be unrelated to
critical behavior. For other parameters, it starts farther away
from R1,c.

Test calculations showed also for M = 3 spiral fronts a
similar multitude of saddles in the plane of complex wave num-
bers and changes of front propagation directions. However, the
parameter dependence was not analyzed systematically.

2. Boundaries between convective and absolute instability

Here we investigate the Re and R2 dependence of the
boundaries between convective and absolute instability against
localized L2 SPI perturbations. Thus, considering the saddle
point pair that starts in the critical point, we explore the Re
and R2 dependence of points A and B in Fig. 7 that mark
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there the sought-after boundaries. We do not consider in this
subsection other saddle points that describe other fronts under
which other L2 SPI perturbations might grow and invade the
whole system, such as, e.g., front III in Fig. 7.

In Figs. 8(a)–8(c), we show the Re dependence of the
reduced boundaries,

εc-a(Re) = R1,c-a(Re)

R1,c(Re = 0)
− 1, (4.5)

between convective and absolute instability for L2 SPI
perturbations at three different R2. The bifurcation threshold
εc (2.4) of axially extended L2 SPI solutions is included for
comparison as well. Both have been obtained via the dispersion
relation of the NSE (2.10) by using a shooting method and, in
the case of εc-a , by using the saddle-point analysis leading to
Eq. (4.4). The dotted lines labeled εc-a(GLE) come from the
GLE approximation Eq. (4.3) to the dispersion relation.

The surface with the shape of a horn in Fig. 8(d) encloses
the absolutely unstable regime of the basic state against L2 SPI
perturbations. The shaded areas in Figs. 8(b) and 8(c) show
cross sections of the horn at R2 = 0 and −50, respectively.
Within the horn, initially localized L2 SPI wave packets expand
axially in both directions. In the convectively unstable region
outside of the horn above the lower curved εc surface, L2
SPI wave packets have a positive growth rate but are blown
advectively out of the system.

It is not surprising that for sufficiently large through-flow
intensity, axially localized L2 SPI perturbations are blown out
of the system. For example, for R2 = 0 in Fig. 8(b), absolute
instability occurs only in the through-flow interval −4.93 <

Re < 2.28. Outside of it, the basic flow is only convectively
unstable against localized L2 SPI perturbations. But it is
somewhat unusual that the absolutely unstable parameter
domain is closed also at large driving R1 by a convectively
unstable surrounding. Furthermore, the absolutely unstable
region pinches off at the tip of the horn in Fig. 8(d), i.e., when
R2 is positive and sufficiently large. Thus, e.g., in Fig. 8(a)
absolute instability no longer occurs at R2 = 50 according to
the NSE.

The GLE approximation, on the other hand, displays an
absolute instability there. In fact, the GLE approximation fails
completely to reproduce the horn structure of the absolutely
unstable domain in Fig. 8(d) with the associated reentrance of
the system into convective instability. The jump of εc-a(GLE)
in Fig. 8(b) at Re ≈ −6.4 is tied to the jump of the minimum of
the marginal stability curve discussed in Sec. III since the GLE
approximation is an expansion around εc,kc, which undergo a
jump.

As an aside, we mention that the tip of the horn in Fig. 8(d)
lies close to the parameters where εc first undergoes a jump as
a consequence of the disappearance of the islands discussed in
Fig. 4 with increasing R2 and with Re becoming more negative.

To sum up, the horn structure of the absolutely unstable
domain in Fig. 8(d) implies that localized L2 SPI perturbations
expanding out of the extended state are blown out of the system
whenever one (or more) of the following three conditions
holds: (i) the through-flow intensity |Re| is sufficiently strong,
(ii) R1 is too large, or (iii) R2 is large enough.

The horn in Fig. 8(d) and similarly the island in Fig. 8(b)
are absolutely unstable regions against the growth of localized
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(d)

(a)

(b)
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20 0 10

FIG. 8. (Color online) Absolute and convective instability of the
basic CCF APF state against L2 SPI perturbations as a function of
Re and R2. The horn-shaped surface in R1-R2-Re space shown in
(d) is the boundary between the absolutely unstable regime within
the horn and the convectively unstable regime. The lines on the
horn at nonequidistant values of R2 and Re are included to better
show the shape of the horn. The curved open surface in (d) below
the horn is the critical bifurcation threshold εc for axially extended
L2 SPI solutions, i.e., the marginal stability surface of the basic
state against L2 SPI with the critical wave number kc. (a)–(c)
show cross sections through (d) at different R2, however with the
reduced driving ε instead of R1 along the vertical axis. Lines labeled
εc-a and εc-a(GLE) are the reduced convective-absolute boundaries
following from the NSE and the GLE approximation, respectively.
These results were obtained from saddle points of the dispersion
relation that emanate from criticality against extended L2 SPI
perturbations. In addition, we found also L2 SPI fronts corresponding
to other k-K saddle locations that destroy the basic flow state at
control parameters within the horn and in the convectively unstable
domain.
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against L2 SPI perturbations vs through-flow Reynolds number Re
for different radius ratios η and R2 = 0. As in Fig. 8, these thresholds
come from saddles that evolve out of critical extended L2 SPI
perturbations when R1 is increased.

L2 SPI wave packets out of the basic state. These regions are
surrounded by a regime of convective instability. That has to
be contrasted with the instability islands discussed in Sec. III,
which are regions with positive linear growth, γ (k) > 0, for
extended L2 SPI perturbations with axial wave number k.
These islands are completely surrounded by a regime in which
γ (k) < 0. So, γ (k) > 0 islands occur when the γ (k) = 0 plane
lies between the top of the hill and the saddle of the γ (k) surface
over, say, the k-R1 plane, cf. Fig. 3. However, in the case of
the islands of the absolute-convective stability boundary, a
saddle of σ (Q) necessarily crosses the γ = 0 plane in order to
fulfill the condition Eq. (4.4).

Finally, we mention that the absolute instability
region also varies when changing the system geometry η

as shown in Fig. 9. Larger radius ratios η expand the
region of absolute instability while smaller ones let them
shrink.

B. Fronts

Here we investigate front properties of L2 SPI perturbations
described by the linearized NSE and compare them with those
following from the GLE approximation. The saddle conditions
for fronts that move with velocity wF in the laboratory frame
and that show neither growth nor decay in the frame comoving
with the front velocity wF read

d

dQ
[σ (Q) + iQwF ] = 0 and Re[σ (Q) + iQwF ] = 0.

(4.6)

Here we present only results for the saddles that develop out
of the ones representing critical L2 SPI perturbations with
Q = kc at R1,c. We distinguish between + fronts and − fronts
according to whether there is exponential vortex growth or
decay, respectively, with increasing z, as shown schematically
in Fig. 10.

(b)(a)

+ front − front

FIG. 10. (Color online) Schematic snapshots of the axial variation
of a vortex pattern (thin lines) under the exponentially varying
envelopes (thick lines) of an orange (bright gray) + front and of
a blue (dark gray) − front. Pattern growth and expansion into the
unstructured basic state can occur when the + front moves to the left,
i.e., for w+

F < 0 or when the − front moves to the right, i.e., for front
velocities w−

F > 0. Otherwise, the vortex perturbation moves out of
the system.

In Fig. 11, several properties of the blue (dark gray) −
front as well as of the orange (bright gray) + front of L2 SPI
perturbations are plotted as functions of μ for fixed R2 = 0
and different through-flow Reynolds numbers Re = 1,5,10,15
as indicated. Solid lines refer to the NSE and dashed lines
to its GLE approximation. The presented front and saddle
properties, respectively, are the spatial growth rate KS of the
front, the wave number kS of the vortex pattern under the front,
the front velocity wS , and the frequency ωS of the L2 SPI
perturbation under the front. QS = kS − iKS is the location of
the saddle in the complex wave-number plane.

At μ = 0, where the saddles in question develop out of the
critical wave number QS = kc, the respective properties of −
fronts and + fronts fall together with KS = 0. Wave packets
limited by two fronts with nonzero K can grow only above the
critical threshold at μ > 0.

Comparing the NSE results for L2 SPI fronts with those of
the GLE approximation, one sees partly large discrepancies as
found already in Fig. 8 for the convective-absolute threshold.
The GLE has difficulties in describing the front behavior of
L2 SPI structures since all quantities differ dramatically from
those of the NSE. Similar differences were also observed
for TVF and 1 SPI at larger μ for, e.g., frequencies and
wave numbers [20]. Here, all quantities are concerned and
the differences occur already for small μ.

Most consequential for the convective-absolute threshold
is that the velocities of the + fronts resulting from the GLE
always change exactly once their sign, namely at the location
indicated by μGLE

c-a in Fig. 11. Thus, the GLE always predicts
for the parameters of Fig. 11 an absolute unstable regime for
μ > μGLE

c-a . On the other hand, the + fronts of the NSE either
change their propagation direction twice, namely at μNSE

c-a , or
their propagation direction never changes, as in Fig. 11 for the
larger values of Re. Thus, the absolutely unstable μ interval
predicted by the NSE for L2 SPI perturbations is either limited
or not existent for the parameters of Fig. 11. See also Fig. 8(b).
There, the absolutely unstable regime for the case R2 = 0 can
be seen to shrink with increasing positive Re and to pinch off
at Re = 2.28.
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FIG. 11. (Color online) Spatiotemporal characteristics of orange (bright gray) + and blue (dark gray) − fronts of near-critical localized
L2 SPI wave packets for R2 = 0 and different through-flow Reynolds numbers Re = 1,5,10,15 (a)–(d) as indicated. In each case, the axial
growth rate Ks , the wave number kS , the front velocity wS , and the frequency ωS are shown for both fronts vs μ. Solid lines refer to the NSE
and dashed lines to its GLE approximation. The locations of the boundaries between convective and absolute instability are indicated by μNSE

c-a
(filled circle) and by μGLE

c-a (open circle).

V. CONCLUSION

We have determined the influence of an axial through flow
on the spatiotemporal growth behavior of axially extended as
well as of localized vortex structures in the Taylor-Couette
system by solving the linearized Navier-Stokes equations
numerically for perturbations with an azimuthal wave number
M = 2 in a wide range of the parameters Re, R1, R2, and η.

While the presentation of our results is focused largely on L
SPI structures, the corresponding results for R SPI structures
are included as well: because of the z → −z symmetry of the
Taylor-Couette system, an R SPI at a Reynolds number Re
behaves like the mirror image of an L SPI at −Re.

In the first part, we have calculated the marginal and critical
bifurcation thresholds of axially extended vortex structures
out of the unstructured basic flow state of CCF APF. For these,
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we found a new, unexpected, and so far unknown behavior: for
certain control parameter combinations, the marginal stability
boundary of the basic flow is not represented by a single
curve in the k-R1 plane as for structures with azimuthal wave
numbers M � 1. Rather, the bifurcation threshold of, say,
extended L2 SPI vortex structures splits up into separate curves
when the through-flow Reynolds number Re is sufficiently
negative. The same occurs for the R2 SPI bifurcation threshold
when Re is positive and sufficiently large. Thereby, an island
is formed in the k-R1 plane in which, e.g., L2 SPI solutions
can grow and saturate nonlinearly. Outside of this island,
extended L2 SPI perturbations become extinct. We found
this to be the result of an eigenvalue surface γ (R1,k) that is
much more complicated than that of M � 1 perturbations.
Another consequence of this complexity are discontinuities
in the critical values, say, as a function of Re and R2. We also
found that changing the through flow and changing the outer
cylinder’s rotation rate has similar effects on the bifurcation
thresholds of extended L2 SPI vortex structures.

In the second part, we have determined the boundaries
R1,c-a(R2,Re,η) between convective and absolute instability
against localized L2 SPI perturbations using a saddle-point
analysis. To that end, we determined the complex dispersion
relation σ (Q) of the linearized NSE over the plane of complex
wave numbers Q = k − iK and in addition that of the
Ginzburg-Landau approximation.

We have investigated the saddle-point pair in the Q plane
that evolves with increasing R1 out of the one for extended
critical L2 SPI perturbations with k = kc and K = 0 at R1,c.
This pair describes for slightly supercritical R1 the two fronts
of a wave packet of L2 SPI perturbations. For them we found
within the NSE, but not within the GLE, an unusual behavior,
namely finite R1 intervals of absolute instability bounded
not only from below but also from above by a convectively
unstable regime. In other words, the basic flow becomes
with increasing R1 first convectively unstable to localized
L2 SPI perturbations, then absolutely unstable, and then
again convectively unstable. In R1-R2-Re parameter space, the

absolutely unstable regime has the shape of a horn. It implies
in turn that outside of the horn, localized L2 SPI perturbations
growing in the basic flow are blown out of the system, that
is, whenever one (or more) of the following three conditions
holds: (i) the through-flow intensity |Re| is sufficiently strong,
(ii) R1 is too large, or (iii) R2 is large enough. The GLE
approximation does not reproduce this complex behavior.
Furthermore, unlike the NSE, it does not show other saddles
and fronts with other spatiotemporal properties that could
destroy the basic state by an invasion of other L2 SPI structures
under such fronts.

In the last part, we presented overviews over the character-
istic front properties: spatial growth rate, wave number, front
velocity, and frequency of the aforementioned two L2 SPI
fronts that evolve with increasing R1 out of critical extended
perturbations and how they change with through flow. Also
here the GLE does not provide good results.

To summarize, we found two types of “growth islands” for
L2 SPI vortices and thus similarly also for R2 SPI vortices.
The first type of island appears in a through flow of sufficient
strength that is directed downward for L2 SPI and upward
for R2 SPI, i.e., opposite to the direction into which the
respective vortices propagate for Re = 0. The island is a region
in the k-R1 plane with γ > 0 where axially extended 2 SPI
perturbations can grow. Such a region is bounded by the
bifurcation threshold, γ = 0, for extended 2 SPI solutions
in the form of a closed curve, and it is surrounded by a
γ < 0 regime. The second type of island is a region in the
Re-R1 parameter plane where the basic flow is absolutely
unstable against localized 2 SPI perturbations bounded by
two fronts that evolve with increasing R1 out of the critical
point. This region is surrounded by a convectively unstable
regime.
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