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We investigate numerically the influence of a homogeneous magnetic field on a ferrofluid in the gap between
two concentric, independently rotating cylinders. The full Navier-Stokes equations are solved with a combi-
nation of a finite difference method and a Galerkin method. Structure, dynamics, symmetry properties, bifur-
cation, and stability behavior of different vortex structures are investigated for axial and transversal magnetic
fields, as well as combinations of them. We show that a transversal magnetic field modulates the Taylor vortex
flow and the spiral vortex flow. Thus, a transversal magnetic field induces wavy structures: wavy Taylor vortex
flow �wTVF� and wavy spiral vortex flow. In contrast to the classic wTVF, which is a secondarily bifurcating
structure, these magnetically generated wavy Taylor vortices are pinned by the magnetic field, i.e., they are
stationary and they appear via a primary forward bifurcation out of the basic state of circular Couette flow.
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I. INTRODUCTION

The Taylor-Couette system has been the subject of re-
search activities for many decades �1–8�. This simple model
system is used for measurements of some hydrodynamic
properties of fluids as well as for basic research in hydrody-
namics, bifurcation mechanisms and pattern formation.

One of the many fascinating features of ferrofluids is the
influence on the macroscopic flow by a magnetic field and
vice versa �9–14�. One famous effect of this interaction is the
dependence of the rotational viscosity of a ferrofluid on a
magnetic field, the so-called magnetoviscous effect �15–18�.
Quantitative investigations of the magnetoviscous effect are
very important for technical applications. One method to
quantify the rotational viscosity is the measurement of the
critical angular velocity in the Taylor-Couette system
�19–22�. From the more theoretical point of view, there is the
question of how far the introduction of an additional force
such as the magnetic one influences bifurcations and pattern
formation.

In the literature, one can find many theoretical works that
analyze the influence of rotational symmetric magnetic
fields, i.e., axial, azimuthal, and radial ones on the flow of a
ferrofluid in the Taylor-Couette system �14,23–29�. Oden-
bach and Müller �30� investigated the off-equilibrium mag-
netization of a ferrofluid in the Taylor-Couette system in a
homogeneous transversal magnetic field. In this paper we
present numerical calculations for different homogeneous
magnetic fields. We focus on pure symmetric axial fields,
pure transversal fields, and superpositions of both.

Transversal fields break the rotational symmetry. The ad-
vantage of such a field configuration is that it is relatively
simple to realize such homogeneous magnetic fields in an
experimental setup �30�. This fact allows to check our results
by experiments. Otherwise, the breaking of the rotational
symmetry by the transversal field generates several new non-
linearly driven effects which are compared with the influence
of the axial field. The latter mainly stabilizes �14� the basic
state of circular Couette flow �CCF� �31�.

Furthermore, a transversal magnetic field component
modulates pure structures such as Taylor vortex flow �TVF�

and spiral vortex flow �SPI� generating so called wavy Taylor
vortices �wTVF� and wavy spiral vortices �wSPI�, respec-
tively, which differ crucially from the classical ones without
magnetic fields �32–35�. This seems to be the first time that
stable forward bifurcating wavy structures out of the basic
state were seen. Moreover, wTVF without any azimuthal ro-
tation is observed.

We elucidate differences and similarities of wavy struc-
tures generated with and without magnetic fields by investi-
gating their Fourier spectra as well as their frequencies.

In Sec. II, we describe the system and our methods of
investigation. There we present the field equations for the
magnetization and the velocity field and we describe impli-
cations of the presence of the magnetic terms in the general-
ized Navier-Stokes equations. This is followed by Sec. III
presenting our main results. Therein we elucidate how the
different structures of �w�TVF and �w�SPI are influenced by
a pure axial, a pure transversal, or an oblique field. We focus
on bifurcation properties, stability, and spatiotemporal dy-
namics of the involved flow states. In the first part of Sec. III
the bifurcation behavior, depending on different magnetic
fields, of �w�TVF and �w�SPI is discussed. The second part
presents the differences between the involved flow states
with and without any magnetic field.

II. SYSTEM AND THEORETICAL DESCRIPTION

The Taylor-Couette system �Fig. 1� consists of two con-
centric, independently rotating cylinders �rotation rates
�1�0 and �2� with no-slip boundary conditions at the cyl-
inder surfaces with the radii r1 and r2�r1. Here we consider
periodic boundary conditions in axial direction with period-
icity length �. The gap between the cylinders is filled with a
viscous, incompressible, and isothermal ferrofluid in a homo-
geneous magnetic field

H = Hxex + Hzez �2.1�

with an axial component Hz and a transversal component
Hx.
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The flow field

u = uer + ve� + wez �2.2�

is decomposed into a radial part u, an azimuthal component
v, and an axial one w.

A. Magnetization equations

A variety of models which describe the magnetization dy-
namics in ferrofluids are discussed in the literature. Most of
them either use the relaxation of the magnetization M into
the equilibrium magnetization

Meq = Meq�H�H/H �2.3�

or they use the relaxation of an effective field

Heff = Meq
−1�M�M/M �2.4�

into the magnetic field H both with one single relaxation
time �9,10,18,36–41�. In the stationary case, these relaxation
equations have the common form �42�

�� + �M � H� � M = ���M − �	H� �2.5�

with �= 1
2 � �u being the local vorticity. The coefficients �,

��, and �	 which differ from model to model are functions of
H, M, and of some material properties of the ferrofluid.

A model reflecting the fact that real ferrofluids contain
magnetic particles of different size considers the ferrofluid as
a mixture of ideal monodisperse paramagnetic fluids �43,44�.
Then, the resulting magnetization is given by M=�M j
where M j denotes the magnetization of the particles with
diameter Dj. Each submagnetization M j is assumed to obey a
simple Debye relaxation dynamics described by

dtM j = � � M j −
1

� j
�M j − M j

eq� . �2.6�

Here, M j
eq denote the equilibrium submagnetizations, � j the

effective relaxation times of the different particle species.
We used for our numerical calculations an approach

analogous to the model of Niklas et al. �24,26�. Therefore,
we assumed a stationary magnetization near equilibrium with
small �M−Meq� and small relaxation times, ���

−1
1 resp.
�� j 
1. In this case Eq. �2.5� and �2.6� can be simplified to

M − Meq = cN� � H �2.7�

with

cN =
�	

�� + ��	H2 resp . cN = �
j

	 j� j . �2.8�

B. Navier-Stokes equations

For an incompressible ferrofluid with kinematic viscosity
� the continuity equation and the Navier-Stokes equations
read

0 = � · u �2.9�

��t + u · ��u = �2u − �p + 2�M · ��H + � � �M � H� .

�2.10�

Here, lengths are scaled by the gap width d=r2−r1, time by
the diffusion time d2 /�, velocities with � /d, the pressure
with ��2 /d2, and the magnetic field H and the magnetization
M with �2� /
0� /d �28�. By means of Eq. �2.7�, the magne-
tization can be eliminated in Eq. �2.10� so that

��t + u · ��u = �2u − �pM + ��cN� � �F � H�

+ cN�F�� · H� − H�� · F� − H � �� � F��
�2.11�

with F=��H. pM combines the pressure p as well as all
magnetic terms which can be written as a gradient.

In a first approach, we assume the internal magnetic field
to be equal to the externally imposed magnetic field H
=Hext �c.f. Eq. �2.1��. Then, Eq. �2.11� can be simplified to

��t + u · ��u = �1 + sN
2 ��2u − �pM − sN � ���� � u� · sN� .

�2.12�

In this approach, the magnetic field and all the magnetic
properties of the ferrofluid influence the velocity field only
via the magnetic field parameter

sN = sxex + szez =�cN

2
H . �2.13�

In Fig. 2 we illustrate the dependence of this parameter on
the magnetic field as well as the influence of the used mag-
netization model. Therefore, we calculated the absolute value
�sN�H�� by using a simple Debye-model ��	=	 ,��=�−1 ,�
=0� �14�, the polydisperse Debye-model Eq. �2.6�, and a
model introduced by Shliomis et al. �18� ��	=	 ,��=�−1 ,�
=
0 / �6�����—respectively, denoted as DEBYE, POLY and
S72 �14�. We use the material parameters of the commercial
ferrofluid APG933 and of a ferrofluid used in recent experi-
ments �22�.

C. Numerical method

The Navier-Stokes Eq. �2.12� that is augmented by the
additional magnetic terms of our approach are solved nu-
merically with the code G1D3 presented in �45,46�. G1D3

combines a finite difference method in r−z plane and time
with spectral decomposition in � direction
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FIG. 1. �Color online� Schematic sketch of the Taylor-Couette
system in a homogeneous magnetic field Hext.

ALTMEYER et al. PHYSICAL REVIEW E 82, 016321 �2010�

016321-2



f�r,�,z,t� = �
m=−mmax

mmax

fm�r,z,t�eim�. �2.14�

Here f denotes one of �u ,v ,w , p	. We choose mmax=8 for an
adequate accuracy. For diagnostic purposes we also evaluate
the complex mode amplitudes fm,n�r , t� obtained from a Fou-
rier decomposition in axial direction

fm�r,z,t� = �
n

fm,n�r,t�einkz. �2.15�

Here k=2� /� is the wave number and �=� is the wave-
length. Beside this we also used a shooting method for cal-
culations of linear stability boundaries �14�.

D. Classification of the investigated structures

At not too high values of �1, the velocity field in the
ferrofluid is given by the circular Couette flow

uCCF = �ACCFr + BCCFr−1�e�. �2.16�

The no-slip boundary conditions u�ri�=�irie��i=1,2� yield
the coefficients ACCF=

R2−�R1

1+� and BCCF=
��R1−�R2�

�1−��2�1+�� with the
Reynolds numbers Ri=�iri

d
� and the radii ratio �=r1 /r2.

In the following we give a short overview of the different
supercritical flow patterns that we investigate in this paper:
We investigate toroidally closed as well as helical vortex
structures. Pure structures, Taylor vortices ��� and spiral
vortices ��� are calculated, as well as their modulated vari-
ants, so called wavy structures, i.e., wavy Taylor vortices ���
and wavy spiral vortices ���. All these structures will be
presented in the following by their corresponding symbols.
The wavy structures are topologically identical with the pure
states, but they show a wavy-like deformation that results
from additional and other stimulated modes compared to the
pure structures. In Sec. II E, we discuss in detail which
modes are stimulated by different imposed magnetic fields.

The magnetically generated wTVF dramatically differs
from the classic wTVF without any applied magnetic field
that can be found in the literature �32–35�. The magnetically

induced wTVF are nonrotating structures having a pinned
phase, whereas the classic wTVF rotate azimuthally. The im-
posed magnetic field shrinks the vortices at constant � posi-
tions and expands them at others �see Sec. III E�.

E. Mode coupling–stimulated modes in magnetic fields

The magnetic terms in the Navier-Stokes Eq. �2.12� in-
duce many new phenomena. In particular, additional modes
are stimulated by magnetic fields with a transversal compo-
nent. In Fig. 3 we present a schematic plot for the stimulated
modes depending on different external H-fields.

A pure axial field �sx=0,sz�0� does not stimulate any
additional modes. Thus, TVF still contains only the modes
m=0,n�0. On the other hand, e.g., a L1-SPI, i.e., a
lefthanded SPI flow with azimuthal wave number 1 contains
modes on the diagonal m=n. Thus, the mode spectra of TVF
and SPI does not change qualitatively when a pure axial field
is applied.

However, for sx�0,sz=0 the magnetic field excites m
= �2 modes in wTVF and in wSPI modes lying on the sec-
ondary diagonal m=n+2 are stimulated. Thus, the pure TVF
and SPI structures do not exist anymore in the presence of a
transversal magnetic field. If the magnetic field has an axial
and a transversal component �sx�0,sz�0� in addition to the
case sx=0,sz�0 also m= �1 modes appear in wTVF. In
wSPI one additionally observes modes on the diagonal m
=n+1 as indicated in the right column of Fig. 3. The mag-
nitudes of the magnetically stimulated modes depend on the
applied fields. They are illustrated in Fig. 3 by different
circles �see caption�. Moreover, the additional modes can
induce further nonlinear mode-couplings, too. Thus, the
mode spectra become very complex. For numerical calcula-
tions see also Fig. 8. The bifurcation behavior and the struc-
ture of these vortex flows are discussed further below.

III. RESULTS

A. Bifurcation behavior

We already mentioned that magnetic fields tend to shift
the onset for vortex flow and stabilize the basic state. But
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FIG. 2. �Color online� Variation of the absolute value sN�H� of
the magnetic field parameter sN�H� �Eqs. �2.8� and �2.13�� with H.
Curves refer to the models DEBYE, POLY, and S72 �14�. Param-
eters of the commercial ferrofluid APG933 �full line� and of a fer-
rofluid used in recent experiments �22� �dashed�.
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FIG. 3. Schematic sketch of modes in the presence of different
externally imposed magnetic fields. Here m represents the azi-
muthal, and n the axial mode index in the expansion �Eqs. �2.14�
and �2.15��. Left row: modes without magnetic field or in a pure
axial magnetic field. Middle row: pure transversal magnetic field.
Right row: superposition of axial and transversal fields. The mag-
nitudes are characterized by circles as follow: Black�dark grey
�bright grey�white. For more details see text, and for numerical
calculations see also Fig. 8.
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first of all we will focus on the bifurcation behavior of the
different structures with the additionally field induced modes
that are explained in Sec. II E.

In Fig. 4 the stable forward bifurcating branches of TVF
and of wTVF solutions are presented for different imposed
H-fields. Figure 5 shows the bifurcation diagrams for SPI
and wSPI in an analogous way. For easier comparison of the
bifurcation branches, we take as control parameter the rela-
tive distance


 =
R1

R1,bif�sx,sz�
− 1 �3.1�

of R1 to the bifurcation threshold R1,bif�sx ,sz� for the vortex
flow in question in the respective magnetic field.

In order to characterize the structures, we display first of
all the dominant as well as the first higher harmonic mode of
the corresponding structure, e.g., �0,1� and �0,2� for TVF. In
addition, the largest field-induced mode amplitudes of the
wavy structures �c.f. Figure 3� are included for comparison.
The symbols in Figs. 4 and 5 and in all other figures are
plotted to guide the eyes: numerical calculations have been
done for many more parameters.

1. Axial field

A pure axial H-field �sx=0,sz�0� does not change the
structure of TVF and SPI qualitatively. Both vortex flows
remain as they are without field since no additional modes
are stimulated by an axial field, c.f. the first row in Fig. 3.
The only, but important effect is the shift of the onsets to
higher values of R1 �14�. For example, the onset of TVF is
shifted upwards by about 24% for the parameters of Fig. 4�b�
and the SPI bifurcation threshold moves upwards in R1 by
about 15% for the parameters of Fig. 5�b�, c.f. Sec. III D.
Also the frequencies of SPI are increased in an axial field,
c.f. Sec. III F.

2. Transversal field

On the other hand, a finite transversal H-field �sx�0� has
a more dramatic influence on TVF and SPI: it not only de-
lays their onset but it also changes their structure. In the case
of TVF the application of a transverse field stimulates modes
with azimuthal mode index m= �2, c.f. upper center part of
Fig. 3. The variation of the modulus �u2,1� with 
 is con-
tained in Fig. 4�c�. In the case of an original L1-SPI the
transversal field generates additional modes with indices m
=n+2, c.f. lower center part of Fig. 3. The modulus �u3,1� is
shown in Fig. 5�c�. Note that also the �1,−1� mode gets
excited that represents a small admixture of a R1-SPI.

Thus, in a magnetic field with a finite transversal compo-
nent the pure TVF and SPI structures do not exist any more.
Instead, wavy vortices bifurcate as primary structured solu-
tions forward out of the CCF ground state; namely wavy
Taylor vortices in Figs. 4�c� and 4�d� or wavy spirals in Figs.
5�c� and 5�d�.

The stabilization of the CCF by a transversal magnetic
field is a bit smaller than by an axial one of the same mag-
nitude: the upwards shift for the onset of wTVF �wSPI� in a
transversal field is about 21% �13%� smaller than the corre-
sponding shift for the TVF �SPI� bifurcation threshold in an
axial magnetic field.

3. Oblique field

In comparison with the pure field cases, sx=0 or sz=0, the
onset of wTVF and WSPI in a H-field that is oriented ob-
liquely to the cylinder �sx�0�sz� is shifted to higher values.
Furthermore, such a superposition of an axial and a transver-
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FIG. 4. �Color online� Bifurcation diagrams of TVF ��� and
wTVF ��� in different magnetic fields: �a� sx=0=sz, �b� sx=0,sz

=0.6, �c� sx=0.6,sz=0, �d� sx=0.6,sz=0.6. Moduli �um,n� of the ra-
dial flow field amplitudes at mid gap are shown versus the relative
distance 
 �3.1� from the onset of the respective vortex flow. Pa-
rameters are �=0.5, k=3.927, R2=0. In the case of a finite trans-
versal field component in �c� and �d�, new modes become stimu-
lated as illustrated in Fig. 3. Symbols in this and all other figures are
to guide the eyes. Calculations have been done for many more
control parameters.
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dial flow field amplitudes at mid gap are shown versus the relative
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 Eq. �3.1� from the onset of the respective vortex flow.
Parameters are �=0.5, k=3.927, R2=−150. In the case of a finite
transversal field component in �c� and �d� new modes become
stimulated as illustrated in Fig. 3.
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sal field stimulates also additional modes with higher mode-
index combinations as indicated in Fig. 3.

Comparing the moduli �um,1� of the mode amplitudes for
m� �0,1	 at the same relative distance 
 �3.1� from the re-
spective onset in the differently oriented H-fields of Fig. 4
we found the following relations to hold for wTVF and TVF
�um,1�sx=c=sz��� �um,1�sx=c ,sz=0��� �um,1�sx=0,sz=c��
� �um,1�sx=0=sz��. Here c=const . � �0,1�.

Summarizing the main results of the bifurcation diagrams
presented in Figs. 4 and 5 one can say: In the case sx�0 of
a finite transversal field, ��c�, �d��, there exist no pure TVF
and SPI solutions anymore. Both, for �w�TVF as well as for
�w�SPI we found a typical square-root forward bifurcation of
the leading mode amplitude. The slope of its square grows
with the applied fields.

4. Slope of TVF bifurcation branch in axial fields

Here we first discuss the phenomenon of growing slopes
with growing magnetic field in more detail for a pure axial
magnetic field. In Fig. 6, this effect is shown in the range
0�sz�0.5 for the square �u0,1�2 of the leading mode of TVF
at R2=−50. Note, that in this field configuration the pure
structure, here TVF, remains unchanged. In order to have a
better possibility for comparison we plotted �u0,1�2 in Fig. 6
against the relative distance 
 of the Reynolds number R1
from the onset in the corresponding field. Increasing the field
parameter sz causes the slope �=��u0,1

2 � /�
 to increase.
These slopes are shown in the inset of Fig. 6 versus sz. An
increase of � has recently been seen also in experimental
TVF �47�.

5. Bifurcation branches in transversal fields

Here we investigate in more detail the changes of the
bifurcation branches of the different vortex structures that
are induced by a transversal H-field. To that end we show in
Fig. 7 reduced moduli �um,1�sx ;
� /um,1�sx=0;
�� versus

sx
2 for some selected supercritical values of 
. Here �a� and

�b� show wTVF �m=0� while �c� and �d� refer to wSPI
�m=1�. For wTVF as well as for wSPI and for all values
of 
 between 0.025 and 0.1 shown in Fig. 7 these ratios
are roughly the same for any given sx. Furthermore,
all of them grow practically linearly with sx

2. The slopes

�̂m=��um,1�sx ;
� /um,1�sx=0;
�� /�sx
2 of the curves in Figs.

7�a�–7�d� are presented in �e� versus the corresponding R2

values. The slopes �̂m decrease when R2 becomes more nega-
tive.

The fact that �̂m=0��̂m=1 implies that the reduced wTVF
amplitude grows more strongly with the transversal field
than the wSPI. In that sense, the influence of transversal
H-fields on the nonlinear bifurcation behavior is larger for
wTVF than for wSPI. On the other hand, the linear bifurca-
tion thresholds of helical wSPI are more strongly shifted by
the transversal magnetic field than the onsets of toroidally
closed wTVF, c.f. Secs. III C and III D.

B. Vortex structures and mode contents

After having investigated in Sec. III A the changes that
differently oriented magnetic field cause in the bifurcation
behavior of TVF and SPI we now address structural changes
of the vortices and the associated changes in the mode con-
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mode amplitudes �um,1�sx ;
� /um,1�sx=0;
�� are shown versus sx

2

for different supercritical values of 
=0.025, 0.05, 0.075, 0.1,
and R2 values as indicated. Here � �m=0� refers to wTVF and �
�m=1� to wSPI, respectively. Further parameters are k=3.1415 and

�=0.5. In �e� the slopes �̂m of the curves in �a�-�d� are shown versus
R2.
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tents of the flows. So, we discuss here the TVF and wTVF
solutions the bifurcation behavior of which have been docu-
mented in Fig. 4 for differently oriented fields and similarly
for the SPI and wSPI states of Fig. 5.

To visualize the field induced changes in the 3D vortex
structures we use in Fig. 8 isosurfaces of the azimuthal vor-
ticity. These surfaces appropriately convey structural details
of the vortex flows in question �35�. In Fig. 8 we identify
with �a�–�d� the vortex structures and the magnetic fields of
Figs. 4 and 5. Thus, �1a� and �3a� in Fig. 8 show TVF and
SPI, respectively, without magnetic field while �1b� and �3b�

show them in an axial field. In �1c� and �3c�, wTVF and
wSPI are shown in a pure transversal field whereas �1d� and
�3d� show them in an oblique field.

1. Axial field

A pure axial field �b� does not change the structure of
TVF and SPI in real space nor the mode structure of the flow
in the m−n Fourier plane. TVF is still made of toroidally
closed, rotationally symmetric vortex tubes with a mode
spectrum containing only m=0 modes. And also the heli-
cally oriented, open vortex tubes of the left winding spiral
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FIG. 8. �Color online� Influence of differently oriented magnetic fields on vortex structures �1, 3� and on the mode contents of the flow
�2, 4�. In �1, 3� we show iso-surfaces of the azimuthal vorticity �zu−�rw at values �90 �1� and �70 �2�, respectively. For better visibility
the 3D vortex structures are plotted in a 4� cylinder with an axial extension of one wavelength. Red �dark gray� refers to positive vorticity
and green �light gray� to negative vorticity. In �2, 4� the mode amplitudes �um,n� of the radial velocity field corresponding to the structures of
�1, 3� are shown over the m−n plane. The magnetic field is zero in �a�. It is oriented axially in �b� �sx=0,sz=0.6�, transversely in �c� �sx

=0.6,sz=0�, and obliquely in �d� �sx=0.6=sz�. So, �a, b� in �1, 2� show TVF, �c, d� in �1, 2� show wTVF, �a, b� in �3, 4� show SPI, and �c,
d� in �3, 4� show wSPI. The vortex structures and the magnetic field parameters in �a�-�d� correspond to those of Figs. 4 and 5. Control
parameters are R1=150,R2=0 in �1, 2� and R1=160,R2=−150 in �3, 4� furthermore k=3.927 and �=0.5.
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�L-SPI� shown in Fig. 8�3a� are not changed by an axial
field. This also holds for its mirror image the right winding
spiral �R-SPI� as well. The SPI flow is periodic in � ,z, and t,
say, with axial wave number k, azimuthal wave number M
=1 in our case, and frequency �. Furthermore, it does not
depend on � ,z , t separately but only on the combined phase
variable �=M��kz−�t. Here the +sign refers to a L-SPI
and the -sign to a R-SPI. The frequencies of L- and R-SPI
are the same and that holds also in the presence of an axial
magnetic field. Thus, a pure axial magnetic field does not
break the continuous symmetry f�r ,� ,z , t�= f�r ,�� of the
SPI fields and the mirror symmetry degeneracy of L- and
R-SPI, c.f. �48�.

2. Transversal and oblique fields

However, the TVF and SPI structures are changed by the
presence of a magnetic field with a finite transversal compo-
nent, sx�0, as shown in �c� and �d�, respectively. The isos-
urfaces become wavy-like deformed and additional modes
are stimulated as described in Sec. II E and shown there al-
ready schematically in Fig. 3. Thus, a transversal magnetic
field �c� generates in wTVF m=2 modes besides the m=0
TVF modes and in wSPI it excites modes m=n+2 on the
secondary diagonal in addition to the m=n SPI modes on the
diagonal. An oblique field �d�, causes beyond the just men-
tioned modes also m=1 in wTVF and m=n+1 in wSPI.

The spatiotemporal properties of the wTVF that appears
in Fig. 8 in transversal and in oblique magnetic fields differ
from those of the classic wTVF. In the latter the axial stack
of vortex tubes is wavelike bent axially upwards and down-
wards as a whole. Then, this deformation structure of the
vortices rotates as a whole.

A magnetic field with a finite transversal component, on
the other hand, deforms the toroidally closed vortices in a
different way. Figures 8�1c� and 8�1d� show that the tubes of
isosurfaces of the azimuthal vorticity remain for certain �
positions nearly unchanged in comparison with the TVF
tubes. However, at other � positions the deformation is
stronger such that their thickness is alternatingly large and
small. These thickness deformations are azimuthally some-
what localized and, most importantly, they do not rotate in
contrast to the deformation wave of the classic wTVF.

Compared to wTVF the vortices of the wSPI do not show
such significant topological differences to the ones without
imposed magnetic field. Here, the wavylike deformations
look similar. The wSPI as well as the SPI structures rotate
already without magnetic field and that remains so in the
presence of magnetic fields. More details are discussed in
Sec. III F.

C. Intersection of SPI and TVF bifurcation thresholds

A point of special interest in the R1−R2 phase plane is the
point of higher co-dimension, �, where the bifurcation
thresholds of the primary vortex solutions cross, i.e., of those
which branch out of the CCF state. That is here TVF and SPI
for axial or zero magnetic fields and wTVF and wSPI for
oblique and transversal fields. At � the order with which
these vortex states appear on increasing R1 changes and with

it the stability of the nonlinear solutions at onset. For ex-
ample, at moderate R2 TVF bifurcates first and is stable at
onset while SPI bifurcate only later at larger R1 being un-
stable at threshold. Order and stability properties are inter-
changed between these two when R2 becomes sufficiently
negative. This holds also for wTVF and wSPI in oblique and
transversal fields.

In Fig. 9, we show as an example the influence of differ-
ent axial H-fields �0�sz�1.0� on the bifurcation thresholds
for TVF and SPI and on the location of the � point. These
results of linear calculations were obtained with a shooting
method �14�. The blue �dark gray� curves represent the mar-
ginal stability boundaries of CCF against onset of TVF and
the red �light gray� those for the SPI bifurcation thresholds.
Full �dashed� lines indicate that the bifurcating vortex solu-
tion is stable �unstable� at threshold.

Increasing sz stabilizes the ground state CCF, both, against
TVF and SPI–c.f. the upwards shift of the respective thresh-
old curves in Fig. 9. But the strength of the stabilization
effect is larger for SPI than for TVF so that the point �
moves toward more negative R2, i.e., to the left in Fig. 9. So,
with increasing field parameter sz the R2-region of primary,
stably bifurcating TVF increases. The magnitude of the shift
is bigger for a pure axial H field than for a pure transversal
H field. As an aside we mention that we checked these linear
stability results against fully nonlinear simulations of the bi-
furcating vortex states finding the same behavior.

The inset in Fig. 9 displays the bifurcation thresholds for
fixed R2=−100 versus sz

2. The change in the sequence of
bifurcation and stability by increasing the axial magnetic
field is shown. For small to moderate field parameters, say,
0�sz�0.37 TVF is the primary stable bifurcating structure
while SPI bifurcate secondarily and unstable. For stronger
fields, sz�0.37, the structures interchange stability and bi-
furcation order.

To summarize: for fixed R2 an axial field shifts the onset
of helical SPI more strongly than the one of toroidally closed
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FIG. 9. �Color online� Influence of an axial magnetic field on
the location of the bifurcation thresholds of TVF and SPI out of
CCF in the R2−R1 plane. The field parameters sz are indicated in
the upper left. Further parameters are k=3.1415 and �=0.5. Blue
�dark gray� lines refer to TVF and red �light gray� ones to SPI. Full
�dashed� lines indicate that the bifurcating vortex solution is stable
�unstable� at threshold. The line connecting the points shows how
the magnetic field shifts the point of higher co-dimension �. The
dotted vertical line marks the fixed R2 value for the inset. It shows
the thresholds as functions of sz

2.
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TVF. We furthermore found this behavior also for all param-
eters and all magnetic field combinations—axial, transversal,
and oblique—for which we investigated �w�TVF and
�w�SPI.

D. Stabilization of the CCF basic state

In Fig. 9 we already presented the shift of the higher
co-dimension point � and the stabilization of CCF in a pure
axial magnetic field resulting from a linear stability analysis
done for k=�. Figure 10�a� presents bifurcation thresholds
for vortex flow in pure transversal magnetic fields �sx
�0,sz=0� while Fig. 10�b� shows them for pure axial fields
�sx=0,sz�0�. These results were obtained by non-linear cal-
culations with the full field equations for k=3.927 and dif-
ferent R2. The upward shifts of the bifurcation values R1,bif
shown in Figs. 10�a� and 10�b�, i.e., the stabilization of CCF
grows linearly with sx

2 or sz
2, respectively. This holds for all

the bifurcation thresholds of TVF, SPI, wTVF, and wSPI
alike. However, the slopes of the curves in Figs. 10�a� and
10�b� differ and they depend on R2.

All the data presented in Figs. 10�a� and 10�b� on the
variation of R1,bif with R2 and si �i=x or z� can be well
parameterized by the following formula

R1,bif�R2,si� = R1,bif�R2 = 0,si� + ��R2�si
2. �3.2�

Figures 10�c� and 10�d� shows how the slopes � that can be
read off from the plots of R1,bif versus si

2 in Figs. 10�a� and
10�b� vary with R2. One can see that � is largest in both pure
field configurations for R2=0, i.e., the increase of the CCF
stabilization with growing si is largest for R2=0.

In the whole parameter range −150�R2�50 that we
have examined here, a pure transversal field has a weaker

influence on the onsets than a pure axial magnetic field since
��R2 ,sx����R2 ,sz�. So, while axial fields shift the onsets
more strongly than pure transversal ones the latter have a
stronger influence on the non-linear spatiotemporal proper-
ties of the bifurcating vortex structures.

E. Nonrotating, phase pinned wTVF in magnetic fields

The topological structures of the different vortex solutions
were presented in Sec. III B. Here, we focus on the dynamics
of the deformations of TVF generated by a transversal or an
oblique magnetic field.

The classic wTVF �32–35�, arises by deforming the TVF
such that the axial stack of closed vortex tubes is wavelike
bent axially upwards and downwards as a whole. Then, this
deformation structure of the vortices rotates as a whole with
a characteristic frequency.

A magnetic field with a finite transversal component, on
the other hand, deforms the toroidally closed vortices in a
different way as shown in Figs. 8�1c� and 8�1d�, c.f. Sec.
III B 2. The tubes of iso-surfaces of the azimuthal vorticity
remain for certain � positions nearly unchanged in compari-
son with the TVF tubes. However, at other somewhat local-
ized � positions they are swollen and at others they are con-
stricted. This pattern of thickness variations is azimuthally
pinned and does not rotate—the field induced wTVF struc-
ture is stationary as the rotationally symmetric TVF. More-
over, transversal and oblique fields show similar behavior,
c.f. Figs. 8�1c� and 8�1d�. In both cases one observes a sta-
tionary wavy Taylor vortex structure. The only difference is
the magnitude and the form of the deformation. Oblique
fields yield a stronger deformation �see also Fig. 8�.

F. Frequencies of SPI and of wSPI structures

The non-rotating, phase pinned wTVF that are generated
by a magnetic field evolve out of TVF which being rotational
symmetric is stationary. Now it is interesting to see how a
magnetic field influences a structure that has already at H
=0 a finite frequency. So, here we investigate how the SPI
rotation frequencies and with it the associated axial propaga-
tion speeds are changed by different magnetic fields.

In Fig. 11, we show the frequencies �1,1 of the complex
mode amplitudes u1,1 of the radial velocity field in the
middle of the gap versus reduced distance 
 Eq. �3.1� of R1
from the respective bifurcation thresholds. See Fig. 5 for the
corresponding bifurcation diagrams of the moduli �u1,1� of
the respective SPI and wSPI solutions.

A first obvious result is that any kind of a magnetic field
increases the frequencies. Second, the frequencies of SPI and
of wSPI are shifted stronger by an axial than by a transversal
field, like their onset shifts. Third, the qualitative bifurcation
behavior of SPI and of wSPI, i.e., their variation with 
 is
basically the same: they all decrease with increasing 
 in a
similar way. This behavior of the frequencies of the non-
linear SPI and wSPI patterns has to be contrasted with the
linear SPI frequencies given by the imaginary eigenvalue of
linear SPI perturbations of the CCF which tend to increase
with growing 
 �35,45�.
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FIG. 10. �Color online� Stabilization of the basic CCF state by
pure transversal and pure axial magnetic fields. �a� Bifurcation
thresholds R1,bif of vortex structures versus sx

2 in transversal mag-
netic fields for R2=0�I�, −50�II�, −100�III�, and −150�IV�. �b� R1,bif

for axial magnetic fields versus sz
2 for the same R2 values as in �a�.

The slopes ��R2� �3.2� of the curves in �a� and �b� are shown in �c�
and �d�, respectively, versus R2 for the bifurcating structures inde-
pendent of their stability. Full �dashed� lines with filled �open� sym-
bols denote stable �unstable� bifurcating vortex structures: TVF���,
SPI ���, wTVF ���, and wSPI ���. The results were obtained from
non-linear calculations with k=3.927 and �=0.5.
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IV. CONCLUSION

We have explored the influences of different magnetic
field configurations on the flow of a ferrofluid in the Taylor-
Couette system. In particular, we investigated the bifurcation
behavior and the spatiotemporal properties of Taylor vorti-
ces, wavy Taylor vortices, spiral vortices, and of wavy spiral
vortices under the influence of homogeneous magnetic fields
that are oriented axially, transversally, or obliquely.

For our numerical calculations, we used an approach
analogous to the model of Niklas et al. �24,26� that assumes
a stationary magnetization near the equilibrium and suffi-
ciently small relaxation times. Depending on the orientation
of the applied magnetic field the spatiotemporal structure of
TVF and of SPI is in general changed so that additional
modes entering the axial and azimuthal Fourier decomposi-
tion of the flow are excited. However, the flow structure of
TVF and of SPI does not change in real space and in Fourier
space when the magnetic field is oriented axially: the sym-
metry properties are unaffected, only the flow amplitudes

and, in case of SPI, the frequencies are altered by an axial
field.

All magnetic fields stabilize the CCF ground state: the
bifurcation thresholds for vortex structures are shifted to
higher values of the inner Reynolds number R1. The shifts
are linear in both field parameters, sx

2 and sz
2. The stabiliza-

tion by an axial field is stronger than by a transversal one.
Furthermore, the onsets of the helical SPI and wSPI are
moved more strongly by the fields than those of the toroi-
dally closed TVF and wTVF. The nonlinear SPI and wSPI
frequencies increase with growing magnetic field parameters
and the frequency shift is largest for axial magnetic fields.
But their qualitative bifurcation behavior is similar: they de-
crease in a similar way with increasing relative distance 

from the onset.

When the magnetic field has a nonzero transversal com-
ponent then the pure TVF and SPI structures do not exist any
more. Instead, the vortex structures that then grow via a pri-
mary, forward bifurcation out of CCF are wavily deformed:
namely wTVF and wSPI. We presented the spatiotemporal
properties and the bifurcation behavior of these wavy struc-
tures in different applied magnetic fields. Since we are not
aware of previous work neither in theory nor in experiments
devoted to transversal or oblique fields we consider our in-
vestigations of these wavy structures also as a stimulus for
further work, in particular for experiments.

Especially the wavy Taylor vortices generated by a trans-
versal or an oblique field differ crucially from the classic
wTVF that bifurcates without magnetic field out of TVF at
relatively large R1 �7,8�. The field generated wTVF, on the
other hand, arises via a primary bifurcation directly out of
CCF. Furthermore, structure and dynamics of this wTVF are
different: �i� The vortex tubes are periodically expanded and
constricted in � direction while in the classic wTVF the axial
stack of vortex tubes is wave-like bent axially upwards and
downwards. �ii� The field generated deformation pattern is
pinned, i.e., stationary as the rotationally symmetric TVF
while the classic wTVF structure rotates as a whole with
constant frequency.

It would be interesting to compare the effects of different
magnetic fields on the bifurcation behavior and the spa-
tiotemporal properties of mhd flows in the Taylor-Couette
setup with our findings for ferrofluids.
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