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ABSTRACT 

We investigate the Taylor-Couette flow of a rotating ferrofluid under the influence of symmetry breaking transverse 
magnetic field in counter-rotating small-aspect-ratio setup. We find only changing the magnetic field strength can drive 
the dynamics from time-periodic limit-cycle solution to time-independent steady fixed-point solution and vice versa. 
Thereby both solutions exist in symmetry related offering mode-two symmetry with left- or right-winding characteris-
tics due to finite transverse magnetic field. Furthermore the time-periodic limit-cycle solutions offer alternately strobo-
scoping both helical left- and right-winding contributions of mode-two symmetry. The Navier-Stokes equations are 
solved with a second order time splitting method combined with spatial discretization of hybrid finite difference and 
Galerkin method. 
 
Keywords: Taylor-Couette Flow; Ferrofluids; Reynolds Number; Symmetry Breaking; Rotating System and 

Boundary Layer 

1. Introduction 

Since first study by G. I. Taylor [1], the flow between 
two concentric differentially rotating cylinders, the so- 
called Taylor-Couette flow, has been investigated using 
either theoretical, experimental and numerical appro- 
aches and has played a central role in the development of 
hydrodynamic stability theory [2-5]. 

Especially in last decades, this simple geometry has 
become refocused as there has been much increased in-
terest in flows of complexer like magnetic fluids, e.g. 
ferrofluids [6] which are often used in laboratory experi- 
ments to study geophysical flows [7,8]. 

Ferrofluids [6] are manufactured fluids consisting of 
dispersions of magnetized nanoparticles in a variety of 
liquid carriers and are stabilized against agglomeration 
by the addition of a surfactant monolayer onto the parti-
cles. In the absence of an applied magnetic field, the 
magnetic nanoparticles are randomly orientated, the fluid 
has zero net magnetization, and the presence of the 
nanoparticles provides a typically small alteration to the 
fluids viscosity and density. When a sufficiently strong 
magnetic field is applied, the ferrofluid flows toward 
regions of the magnetic field and properties of the fluid 
such as the viscosity are altered [6,9], and the hydro- 
dynamics of the system can be significantly changed  

[10-21]. Till this day most of these works only consid-
ered the influence of magnetic fields onto steady, time- 
independent flows. Thus there is a lack of, either nu-
merical or experimental, researches for consequences of 
magnetic fields onto time-dependent flows. 

Likewise numerous numerical, theoretical and experi- 
mental investigations have shown that the effects of 
physical end-walls are evident [22-26] even in very long 
Taylor-Couette systems (large aspect ratio, Γ) and have a 
significant influence on the flow dynamics. The presence 
of end-walls, even in the limit of being infinitely far apart 
completely destroys the axial translation invariance in the 
idealized theory [22,23] and results in imperfect bifur- 
cation. With only inner cylinder rotating and outer cy- 
linder at rest, the flow dynamics for small systems Γ ≈ 1 
is dominated by the competition between several so- 
called normal and anomalous mode solutions leading to 
very rich dynamics [22-24,27,28]. For very short systems 
only one or two Taylor cells are present in the annulus 
[29,30]. 

In the present paper, we elucidate the influence of a 
symmetry breaking transverse magnetic field onto the 
hydrodynamics of counter-rotating ferrofluid with special 
respect to time-dependent flow. Without magnetic fields 
such flows have been studied mainly for co-rotating cy-  
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linders with the focus on nonlinear-pattern formation 
[31,32] with an emphasis on magneto-hydrodynamical 
phenomena with respect to astrophysical application [33- 
35] or even in turbulent flows [36,37]. Thus it is well 
known that axial magnetic fields can drive turbulence via 
the magneto-rotational instability [38,39]. 

This paper is subdivided as follows. Following the in- 
troduction, Section 2 describes the mathematical for- 
mulation of the problem. Hereafter Section 3 shortly in- 
troduces flow state in absence of magnetic field which 
we have chosen as initial state for further investigation of 
the magnetic field modifications. Sections 4 and 5 pre-
sent the main results as the bifurcation scenario with 
variation of the magnetic field strength and the spatio- 
temporal behavior of the flows. Finally, Section 6 con- 
cludes the main results. 

2. System and Theoretical Description 

Consider an incompressible, isothermal, homogeneous, 
mono-dispersed ferrofluid with kinematic viscosity ν and 
density ρ within the annular gap of a Taylor-Couette sys-
tem, consisting of two concentric, independently rotating 
cylinders (c.f. Figure 1). The inner and outer cylinders of 
radii R₁ and R₂ rotate at angular speeds ω₁ and ω₂, re-
spectively. The top and bottom end-walls are stationary. 
They are a distance Γd apart, where Γ is the non-dimen- 
sional aspect ratio and 2 1  is the gap width. The 
system is described using a cylindrical polar coordinate 
system  with a velocity field . 

d R R 

 , ,r z   , ,u v w
Either the radius ratio of the cylinders is hold fixed to 

1 2 0.5R R   and the aspect ratio to Γ = 1. We consider 
homogeneous external fields in transverse x-direction of 
strength Hx where cosx r  . Using the gap-width d as 
the length scale, the diffusion time 2d   as the time 
scale, scaling pressure with 2 2d , and the magnetic 
field H and the magnetization M with (ρ/μ0)

0.5ν/d (μ0 is 
the magnetic constant, i.e. magnetic permeability of free 
space), the non-dimensional governing equations are 

 
  

2

1 2 ,

0.

t u u u p

u

    

    

 

M H M H 



     (1) 

On the cylinder surfaces, we consider no-slip boun- 
dary conditions  and    1 1, , 0, ,0u r z Re 

 ,0Re , , 0,u r z 2 2 , where the inner and outer Rey- 
nolds numbers are 1 1 1Re

 

Figure 1. Schematics of the Taylor-Couette system. 
 
magnetization of the ferrofluid. Using the equilibrium 
magnetization of an unperturbed state with homogene- 
ously magnetized ferrofluid at rest with the mean mag- 
netic moments orientated in the direction of the magnetic 
field, lead to e M H  (with abbreviation eq for equi- 
librium). The magnetic susceptibility of the ferrofluid, χ, 
can be determined by Langevin’s formula [40]. The fer- 
rofluid we consider in this paper correspond to APG933 
[41] with χ = 0.9. Using the near-equilibrium approxima- 
tion of Niklas [14,15] (small eM M  and small re- 
laxation times 1  , where 2u Ω  is the vor- 
ticity (Ω gives the absolute value) and τ is the magnetic 
relaxation time), as already presented in [10,19]. 

Ω ,2
e n= c HM M             (2) 

where  2
0Ω 12

nc H 6       is the Niklas coef- 
ficient, μ is the dynamic viscosity, and Φ is the volume 
fraction of the magnetic material. 

Using Equation (2) the magnetization can be elimi- 
nated from Equation (1), resulting in the ferrohydrody- 
namic equation of motion [14]: 

 
 

2

2 / 2 ,

m

n

t u u u p

c

    

        H F H F
     (3) 

where  ΩF H  and m  is the dynamic pressure 
incorporating all magnetic terms which can be written as 
gradients. Here, we assume that the internal magnetic 
field is equal to the external imposed magnetic field. It is 
known as a leading order approximation [19] but is suffi- 
ciently good for our here focused numerical investiga- 
tions of time-dependent ferrofluid flows. Then Equation 
(3) simplifies to 

p

 
   

2

2 2 22 Ω

m

x

t u u u p

s u H H H u

    

           
  (4) 

r d   and 2 2 2Re r d  , 
where 1 1r R d  and 2 2r R d  are the non-dimen- 
sional inner and outer cylinder radii, respectively. In this 
paper we will hold the differentially rotations of the 
cy-linders fixed to  and 2  which 
gives a rotation ratio 

1 350Re  500Re  
2 1 1.Re Re 429  . Equation (1) is 

solved together with an equation that describes the  

In this approach, the magnetic field and all the mag- 
netic properties of the ferrofluid influence the velocity 
field only via the magnetic field parameter 

   2 2 22 2 2 ,x x ns H c              (5) 
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

Hence we will either use lc0 for the axisymmetric time- 
periodic limit-cycle solution with m = 0 symmetry in 
absence of a magnetic field and lc₂ for the limit-cycle 
solution with finite applied magnetic field which shows 
m = 2 symmetry. The same arguments also hold for the 
steady time-independent fixed point solutions fp2 and fp0 
with and without a magnetic field respectively. 

Note that this is the only parameter that will be 
changed in this paper, all others will be hold fixed. 

Equation (4) (including the continuity equation) is 
solved with our numerical method G1D3 [10,19], which 
combines finite-differences in (r, z) with Fourier spectral 
decomposition in θ and (explicit) 2nd order time splitting. 
The variables are written as 

    
max

max

, , , , , exp ,
m

m
m m

f r z t f r z t im 


     (6) 

where f denotes one of  . For the parameter 
regimes studied here, 

, , ,u v w p
max 8m   provides adequate ac- 

curacy and uniform grids with spacing 0.05r z    
and time-steps 1 3800t   are used. For diagnostic 
purposes, the complex mode amplitudes  ,mf r t  ob-
tained from a Fourier decomposition in the axial direc-
tion 

    , , , expm n mn f r z t f r t inkz        (7) 

where k is the axial wavenumber, are evaluated. The Na-
vier-Stokes equations together with the boundary condi-
tions for the finite-length Taylor-Couette system with 
(classical) fluid confined by end-walls are in variant to 
rotations about the axis and reflection about the axial 
mid-height. But with ferrofluid in the annulus and im- 
posed transverse magnetic field  0xs   these symme- 
tries are broken and thus the flow is inherently full 
three-dimensional [10,19,20]. Interactions of the mag- 
netic terms in the ferro-hydrodynamic equation result in 
either an axial downward or upward directed force [42] 
on the side where the magnetic field enters the bulk, i.e. 

0 
 π 

, and an inverse directed force on the opposite side 
 where the field exits the annulus respectively. 

d d d

Figure 2 presents spatio-temporal snapshots over one 
period τ of our referenced time-periodic (initial) limit- 
cycle solution lc₀ in absence of a magnetic field. It shows 
isosurfaces of either the angular momentum rv and of the 
azimuthal vorticity η respectively. Lc0 is axisymmetric 
(only m = 0 mode contribution, c.f. Equation (7)) but 
obviously not reflection symmetric. But there are two 
symmetries related coexisting limit-cycle solutions that 
bifurcate out of two steady also non-reflection symmetric 
states that are symmetry related to each other in similar 
way. This is the so-called anomalous mode solution [30]. 
In literature one finds different meanings of this expres-
sion. It can describe a flow state with 1) different (mostly 
odd) number of vortices in the annulus or 2) different 
flow directions (mostly combined with 1)) near the axial 
boundaries—the lids. This is classical invert directed 
(normal mode flow) but also flows with either one or 
even both outward directed flow exist—the anomalous 
mode solution. Finally it is also common 3) to describe 
flows with different size of vortices, i.e. normally in very 
short systems (as considered here) where one vortex 
dominates the dynamics and the minor vortex just plays a 
subsidiary role [29]. Hence the only symmetry relation of 
these anomalous modes is the time-translation with pe-
riod τ .This also holds for the herefrom bifurcation limit- 
cycle solution—an existing inverted flow pattern (c.f. on- 
line available material movie1.avi and movie2.avi). 3. Initial State and Notation 

Following we will short present main characteristics of 
that time-periodic flow in absence of a magnetic field 
which we have chosen as initial state for discussion of 
modifications due to the presence of finite transverse 
magnetic field. 

4. Bifurcation Scenario 

As global measure of the flow we use the modal kinetic 
energy 

In order to distinguish the different solutions with and 
without applied magnetic field we will use the following 
short abbreviations characterizing the different flows. 

2π

0 0

:
orΓ

m m m
m ri

E E u u r r z                   (8) 

 

 
(a)                    (b)                   (c)                    (d)                  (e) 

Figure 2. Isosurfaces of rv = 300 (top row) and η = ±300 (bottom row) at times t as indicated over one period (τ ≈ 0.050212) 
for lc0 at sₓ = 0 (see also online available material movie1.avi and movie2.avi). (a) t = 0; (b) t = τ/4; (c) t = τ/2; (d) t = 3τ/4; (e) t 
= τ. 
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where m m  is the m-th (complex conjugated) Fourier 
mode of the velocity field. Due to time-dependence of 
the solutions lc0 and lc2 we will further use the (long-) 
time-averaged energy 

u u 

E . Likewise or local measure we 
also use either Fourier modes of the radial velocity at 
mid-height and mid-gap 

 2,0, 2,mn mnu u d t    (c.f. Equation (7)) and sooner 
the azimuthal vorticity at two points symmetri- cally dis-
placed about mid-plane on the inner cylinder, 

 1,0, 4,r t    and  1,0,3 4,r t    . 
Figure 3 shows the variation with sₓ of time-averaged 

modal kinetic global energy E  and for either 0m   
and  modes the peak-to-peak amplitudes ∆u01 and 
∆u₂₁ together with its corresponding long-time averaged 
values u01 and u21 respectively. Note that for x

2m 

0.553s   
(below the bifurcation threshold of the lc2) the flow fp2 is 
time-independent. Starting without a magnetic field (left 
in Figure 3) the initial state is an axisymmetric time- 
periodic limit-cycle solution lc0 (c.f. Figure 2) with only 

 mode component. All other azimuthal modes are 
identical zero. Any finite transverse field component, 
independent its strength sₓ destroys this symmetry [10,11,  

0m 

 

 

Figure 3. Variation with sₓ of time-averaged kinetic modal 
energy E  (a) and different amplitudes ((b), (c)) at mid- 
gap for lc0, lc2 and fp2. Shown are either the peak-to-peak 
amplitudes mnu  and its long time-averaged values mnu , 
respectively, for (b) axisymmetric (m = 0) contribution 
( , 01u 01u ) and (c) mode-two (m = 2) contribution ( 21u , 

21u ) introduced due to finite transverse magnetic field (c.f. 

Equation (7)). Vertical dotted lines indicate the bifurcation 
threshold of lc2. 

19] stimulating 2m   contribution. Increasing sₓ results 
in enlarging this 2m   contribution, which is compen- 
sated by decreasing the axisymmetric  contribu- 
tion. 

0m 

While ∆u01 monotonously decreases with sₓ ∆u21 
firstly increases (up to ) before it also de- 
creases again with sₓ. The initially increase and later de- 
crease in ∆u21 results from the contrary competition that 
larger sₓ on the one hand side enforce the 

0.36xs 

2m   con- 
tribution but simultaneously destabilize the supercritical 
solution lc2. Finally both vanish at the bifurcation point 

0.553xs   of lc2 (see dotted lines in Figure 3). Near 
this bifurcation point, both peak-to-peak amplitudes ∆u01 
and ∆u21 follow a square-root-law indicating the super- 
critical character of the Hopf bifurcation. Aside the long- 
time averaged amplitude 21u  increases monotonously 
with sₓ, independent of the time-characteristics of the 
solutions. This increase in 21u  is compensated by a mo- 
notonous decrease 01u . 

For 0.553xs   only fp2 remains in the system. This 
solution corresponds to the anomalous mode solution [29] 
in absence of a magnetic field. Here it is modified in- 
cluding strong 2m   contribution. Hence this solution 
does not have the axisymmetry of classical anomalous 
mode solution. Instead it has  symmetry (c.f. 
Figure 4) due to finite sx. 

2m 

The global energy E  in the system monotonously 
increases with field strength sₓ. Thereby it first follows a 
squared law for lc2 until the bifurcation point 
 0.553xs 

2m

 and below this boundary it grows almost 
linearly for fp2. Physically the increased energy results 
from the enlarged complexity in the bulk due to genera- 
tion of   symmetry. 

Figure 5 presents the corresponding period of oscilla- 
tion τ for lc₂ and lc₀. Starting at the bifurcation point at 

0.553xs   (almost right in Figure 5) the period τ be- 
comes finite at onset of lc₂ and decreases with decreasing 

xs  whereby the range of variations are relatively small 
(c.f. values on ordinate). This behavior is quite similar to 
the bifurcation of classical limit-cycle solution lc0 out of 
basic state in absence of magnetic fields [28]. 

We want to mention that there are some experiments 
[11,43] (but for significant longer system length Γ, larger 
than 28) that observed a kind of hysteresis around the 
onset of supercritical flows. I.e. the critical field strength 
for the appearing of solutions out of basic state by in- 
creasing the field is different (i.e. larger) then that one 
where the supercritical flows vanish with decreasing field 
strength. 

This behavior can be explained regarding the axial 
wavenumber k. Accompanied with the variation of field- 
strength xs  the axial wavenumber k in the flow can also 
change as there is a competition between different 
lengthscales at the inner boundary layer which are pre-  
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(a)                          (b)                       (c)                         (d) 

Figure 4. Isosurfaces of rv and η for fp2 at sₓ = 0.6 for full and m = 2 contribution as indicated; isolevel shown at rv = 300, 
[max] = [600], rv(m = 2) = 5, [max] = [90], η = ±300, [min, max] = [−500, 500] and η(m = 2) = 180 & −60), [min, max] = [−250, 
350]. (a) rv; (b) rv(m = 2); (c) η; (d) η(m = 2). 
 

 

Figure 5. Variation of periodicity length τ with sₓ for lc0 and 
lc2 (c.f. Figure 3). 
 
ferred by the centrifugal instability due to variation of 
Re1. Usually flows with different k have different onsets. 
But due to the shortness of our here chosen system 

 such kind of effects don’t play a role and there- 
fore can be ignored. 
 1  

 

Here we want to mention that so far these hysteresis 
have just been observed for the bifurcation of stationary 
time-independent flows. The existence of such effects for 
the bifurcation of time-dependent flows either time-pe- 
riodic or only quasiperiodic is a still open question that 
should motivate future experimental work. 

5. Spatio-Temporal Characteristics 

Figure 6 shows time series of flow amplitudes either u01 
and u21 and their corresponding power spectral densities 
(PSDs) for lc0 with  and lc2  respec- 
tively. The inset in the Figure 6(a) illustrates the meas- 
ure of peak-to-peak amplitude ∆ and its corresponding 
period length τ (c.f. Figure 5). Analog to the small varia- 
tion τ the PSD also offers minor variations with 

 0xs   0.4xs 

xs  even 
while the flow loses its axisymmetry due to finite xs . 
The frequencies are only slightly shifted to smaller val- 
ues with increasing sₓ. 

It is well known that magnetic fields with finite trans- 
verse component break the axisymmetry due to mode- 
two coupling [11,25,28]. Hence the flow develops two 
local pinned “bulges” (i.e. 2m   symmetry) in azimuth 
as visible in the isosurface plots of rv and η (c.f. Figure 
7(c)). The only remaining symmetry for lc0 and lc2 is the 
time-periodicity. 

Note that we also checked the  contribution to 
be the only non-zero component. Starting with random 
perturbations over all other modes these will die out by 
time. 

2m 

 

Figure 6. Time series ((a), (b)) of radial flow amplitudes u01, 
u21 and its corresponding PSD ((c), (d)) for lc0 at sₓ = 0 and 
lc2 at sₓ = 0.4. Horizontal dashed lines in ((a), (b)) indicate 
long-time averaged values and the inset in (a) illustrates the 
measure of ∆ and τ. 
 
Comparing the time-dependent flows with and without 
applied magnetic field one finds significant different 
characteristics especially in the  contribution: 1) 
Even while the dominant jet oscillating about mid-plane 
only slightly differs the  contribution show a 
strong time-dependence. It illustrates a kind of strobo- 
scoping over one period whereby the pattern remains 
localized phase-pinned and non-rotating. 2) The latter 
stroboscoping in the 

2m 

2m 

2m   contribution shows a peri- 
odic, alternating change between left- and right-winding 
shape (c.f. Figures 7(b) and (d)) over one period. This 
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Figure 7. Isosurfaces of rv ((a), (b)) and η ((c), (d)) for lc2 at sₓ = 0.4 at different times t as indicated over one period (τ ≈ 
0.051914); ((a), (c)) show full solution (isolevel shown at rv = 300, [max] = [800], η = ±300, [min, max] = [−600, 600]) and 
((b),(d)) m = 2 contributions (isolevel shown at rv = 50, [max] = [250], η = 180 & −60, [min, max] = [−300, 400]) (see online 
available material movie3.avi, movie4.avi, movie5.avi, and movie6.avi), respectively. Note that even while the solution is 
time-periodic the m = 2 contribution do not rotate. It just illustrates a stroboscoping behavior of left- and right-winding cha- 
racteristics to appear and vanish again over one period. 
 
differs from the shape of fp2 which offers only one (do- 
minant) helicity (left- or right-winding) characteristics in 
its  contribution. But note that the isolevels for 

 in Figure 7 are different and therefore can 
just give a qualitative indentation. 

2m 
 2m  







In Figure 4 isosurfaces of fp2 are presented. The pat- 
tern is strongly deformed with visible m = 2 symmetry 
due to the relative large field strength . Even 
while the surface plot of rv only show small modulations 
the wavy-like deformation of vortices is obvious. But 
interestingly the m = 2 contribution in particular 

 do not show any significant helical shape in 
contrast to the latter discussed pattern for lc2 (c.f. Figure 
7). 

0.6xs 

 2m 

Figure 8 shows phase portraits of lc0, lc2 and fp2 on 
 ,    for various xs  as indicated. Dotted line with 
points indicates stationary and time-independent flows. 

Starting in fp2 with  (top right) and decreas- 
ing 

0.8xs 
xs  lc2 bifurcates out of the steady state fp2 at xs  

about 0.553. Different circles illustrate the evolution of 
lc0 and lc2 which are obviously not symmetric here. But 
note that the symmetry related solution bifurcating in the 
same way out of the corresponding flow of the opposite 
anomalous mode which parallel exists. 

6. Momentum Flux and Cross-Flow Energy 

Taking the θ component of the Navier-Stokes equations 
and averaging over cylinders at fixed radius r the angular 
momentum flux [44] can be defined as  

   3:
a r a r

J r uv r r v r   

mean value can be obtained from an additional average  

         (9) 

where a(r) stands for the averaging over the surface of a 
concentric cylinder at radius r. Moreover the longtime 

 

Figure 8. Phase portraits for lc0, lc2 and fp2 on (η−,−η+) at 

ver time. For visual propose we will separate the mo- 

different sₓ as indicated. 
 
o
mentum flux into its both contributions 

 
3:Jdif r uv r  and  

3:Jadv r 
a r r a r

v uv r  

(c.f. Equation (10)) characterizing diffuse and advective 
part respectively. Additional we will also normalize the 
momentum flux with the corresponding CCF angular 
momentum flux Jᶜᶠᶠ for 0xs  . Hence we only use the 
CCF-normalized quantities :N cffJ J J ,  

:N cffJ dif Jdif J  and :N cffJ adv Jadv . 
The spacetime p  Figure 9 show either the full 

an

J
lots in

gular momentum flux Jᴺ and separate its both com- 
ponents Jᴺdif and Jᴺadv for lc0 in absence of a magnetic 
field. Note that this flow is axisymmetric. In addition, the 
averaged azimuthal velocity  a r

v  is also shown. 
The full momentum flux J minated by the dᴺ is do iffu- 

Copyright © 2013 SciRes.                                                                                OJFD 



S. ALTMEYER 122 

 

Figure 9. Spacetime plot :N cffJ J J  (a) (c.f. Equation (9  

th contributi

))

and its split up into the bo ons  
:N cffJ dif Jdif J ; (b) and :N cffJ adv Jadv

velocity 

J  (c) as ave- 

raged azimuthal  v a r  (d) for lc0 at 0xs  . 

Red (yellow) indicates posit gative) values. Co s 
are shown with .J J 0 2N N NJ dif adv       and for 

ive (ne ntour

  50v a r  . 

 
ve contribution Jᴺdif. Thereby its both contributions 

half of the period it is almost constant before 
it 

 flux for lc  at 

si
Jᴺdif and Jᴺadv show variations over one period just al- 
ternating to each other. While Jᴺdif varies almost har- 
monic over one period Jᴺadv shows more pronounced 
dynamics. 

For first 
fast increases and then significantly decreases in the 

second half of each period. 
Comparing the momentum 2 0.4xs   (c.f 

Fi

 
Jⁿ

gure 10) with that for lc0 at 0xs   (c.f e 9) 
one observes the shape in all spac plots to be quite 
similar. Merely the modulations for lc2 become weaker. 

This holds for either the full angular momentum flux

. Figur
etime 

 and its both contributions Jᴺdif and Jᴺadv and for the 
averaged velocity  a r

v  in similar way. At the bifurca- 
tion point of lc2 at xs  

 

Figure 10. As Figure 9 but for lc2 at . Contours are . 0 4xs

.0 2  ashown with J JN N NJ dif adv     nd for  

  50v a r  . 

 
Even while the dominant dynamics starts at the inner 

cy

the 
la

 of radial averaged momentum 
flu

linder boundary layer due to the two streams along the 
inner cylinder (from both end-walls to mid-height) to 
merge in an outward directed jet the angular momentum 
flux do not show any significant modifications in this 
region. Its variations are largest in the bulk interior over a 
relative wide radial gap (c.f. Figures 9(a) and 10(a)). 

Only the advective component that also shows 
rgest variations indicates a slightly orientation towards 

the inner boundary layer. 
The temporal evolution
x N

r
J  is presented in Figure 11. Obviously the 

diffus rt ive pa N

r
J dif  dominates the full momentum 

flux. But while this is almost constant in time the minor 
advective part N

r
J adv  shows significant periodic 

timedependence e he full momentum flux visible 
in the modulation by time. Comparing 

ffecting t
N

r
J dif  with 

the long-time averaged momentum f

 

lux 
,

N

r t
J   

(horizontal dashed lines) reflects its dominance. Note 
that Figure 11 shows the absolute magnitudes of the 
momentum flux and its contributions. Jᴺadv is negative  

about 0.553 the time-dependence 
of all quantities vanish. 
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Figure 11. Variation with t for absolute magnitudes  N

r
J  

and its both contributions N

r
J dif  and  

 N

r
J adv  for lc0 at s  nd lc2 0x  (a) a at .0 4xs   (b) 

corresponding to Figur nd 9. Horizontal d ines 

indicate the long-time average 

es 8 a ashed l

,

N
r t

J  (c.f. Figure 12). 

 
and therefore opposite directed to N

r
J dif  minimizing 

me average of momen- 

tu

the complete momentum flux J. 
Figure 12 shows the long-ti

mflux 
,

N

r t
J  (c.f. dashed lines in Figures 8-10) with  

xs  and likewise the long-time and radial average azi- 
muthal velocity 

,r t
tonously with 

v . Both quantities decrease mo- 
no xs  until reaching the bifurcation thre- 
shold of lc2. Herea for fp2 the momentum flux do not 
virtually show an urther variation—is more or less 
stagnated while 

fte
y f

r 

,r t
v  shows an almost linear decrease 

for further increase of xs . 

The almost constant value 
,

NJ  for 0.553xs    

m
r t

 stat Jadv be-
co  small 

ight be explained as in steady e fp2 ∆  
mes “neglectable”. Thus only modifications in 

the diffusive component due to variation of xs change 

the momentum flux 
,

N

r t
J  But as for lc2 these modi- 

fications are quite sm The radial position of the 
maximal modificatio

all. 
ns maxJ  moves slightly outwards 

with increasing the field strength xs . The visible slight 
tilting in all spacetime plots of J (c.f. circular contour 
lines, slightly tilted from bottom left to top right in Fig- 
ures 9 and 10) indicate the dynamics to start at the inner 
cylinder boundary layer and from there entering into the 
bulk. 

The energy content in transverse velocity component 
at radial distance r and an instant of time can be mea- 
sured by the so-called cross-flow energy, 

 
2 2:cfE u w              (10) 

 

,

N
r t

JFigure 12. Variation with sₓ of  (a) and v  (b). 

Again dotted lines indicate the bifurcation threshold for lc2.

s avera he

Opposite to the angular momentum flux the cross-flow 
en

ndary layer (c.f. Figure 13), 
in

 
 

As before a(r) stands for area ged over t  sur- 
face of cylinder at radius r. 

ergy clearly indicates the region of largest modulation 
near the inner cylinder bou

dependent of the presence of a magnetic field is applied 
or not. The temporal modifications are stronger in ab- 
sence of a magnetic field. As the momentum flux also the 
cross-flow energy becomes constant below the onset of 
fp2  0.553xs  . But other than the momentum flux the 
spacetime plot of cross-flow energy indicates two bands 
of regions where it is significant increased. A second 
dom o lying near the inner cylinder that co- 
incide with the region where the flow is along the inner 
boundary layer starting near the lids to merge with the 
oscillating radial outward directed jet of angular mo- 
mentum. Additionally a second weaker band of local 
increased cross-flow energy is visible arranged between 
mid-gap and quarter-half of the gap 0.5 0.75r  . 

As the 2m

inant one als

  contributions do not rotate the cross- 
flow energy Eᶜᶠ is almost unaffected by variations of the 
field strength as visible in the almost identical shape of 
the cross-fl ergy Eᶜᶠ for lc0 at 0xs   and lc2 at 0.4 
(c.f. Figure 13). The differences mainly result from the 
increase of 2m

ow en

  contributions with xs . 

7. Conclusion and Discussion 

In this paper, ated nonlinear hwe investig ydrodynamics 
rrofluid. Therefore 

 counter-rotating 
of time-dependent flow of a rotating fe
we considered a setup of differentially
cylinders with small-aspect-ratio and wide-gap annulus 
and applied symmetry-breaking transverse magnetic 
fields. We found the flow can be driven from time-in- 
dependent steady fixed-point solution to time-dependent,  a r
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Figure 13. Space-time plot of the cross-flow energy, 

   , 2 2cfE r t u w a r  , averaged over the surfaces of a 

concentric cylinder for each radius r for lc0 at (a) 0xs   

and lc  (b) .0 4s  . Red (yellow) indicates high (low) 

energy with contours  50cfE  . Maximal energies are (a) 
488.97 and (b) 424.47 (c.f Figures 9 and 10). 
 
periodic limit-cycle so d vice versa by only chan- 
ging the strength of the applied magnetic f

2

lution an
ield. 

Due to shortness of our considered setup so-called 

etic field
th

th—they are 
ph

entum flux nor the cross-flow energy is sig-
ni

advective contribution which is opposite directed to the 

e germ and mo-
tiv

ed 

tions of the Royal Society A 15, 1923, 
pp. 289-343. 

x

anomalous mode solution exists in the system for not to 
high Reynolds numbers. In absence of a magn  

ese steady states are axisymmetric and exist symme- 
try-related. We elucidated this states also to exist in 
magnetic fields with finite transverse component. Even 
while they also exist symmetry related there axisym- 
metry is lost due to stimulation of finite m = 2 contribu- 
tion [10,19]. This mode-two symmetry is also preserved 
and underlying the time-periodic limit-cycle solution 
bifurcating out of these anomalous modes. 

The time-independent flows show either a left-winding 
or right-winding helical shape due to the m = 2 contribu- 
tions [42] which do not rotate in azimu

ase-pinned. Physically one observes two “bellies” one 
on that side where the magnetic field enters the annulus 
and a second one on the opposite side where it exits the 
annulus again. Instead we found time-dependent limit- 
cycle solution to include both contributions. In particular 
it shows a kind of stroboscoping over one period alter-
nating between both left- and right-winding m = 2 con- 
tribution. 

Even while the symmetries are significant modified 
due to a finite transverse magnetic field neither the an- 
gular mom  

ficantly modified. Independent of the magnetic field 
strength the momentum flux is always dominated by its 
diffusive contribution which only shows small time-de- 
pendent variations over one period. In contrast, the minor 

diffusive one, it illustrates more pronounced variations 
over one period which is responsible for the time-de- 
pendence of the whole momentum flux. 

We want to finish with the interesting but so far still 
open point of existence of hysteresis also for the bifurca- 
tion scenario of time-dependent flows as it was found for 
time-independent flows. This might be th

ation of further numerical and experimental works. 
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