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Abstract. We present numerical simulations of closed wavy Taylor vortices
and of helicoidal wavy spirals in the Taylor–Couette system. These wavy
structures appearing via a secondary bifurcation out of Taylor vortex flow and out
of spiral vortex flow, respectively, mediate transitions between Taylor and spiral
vortices and vice versa. Structure, dynamics, stability and bifurcation behaviour
are investigated in quantitative detail as a function of Reynolds numbers and
wave numbers for counter-rotating as well as corotating cylinders. These results
are obtained by solving the Navier–Stokes equations subject to axial periodicity
for a radius ratio η = 0.5 with a combination of a finite differences method and
a Galerkin method.
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1. Introduction

This paper elucidates in quantitative detail how rotationally symmetric, stationary Taylor
vortices in the Taylor–Couette system [1] are transformed into helicoidal, propagating spiral
vortices and vice versa. Such transitions that are mediated by wavy-like structures have partially
been predicted theoretically but have not yet been investigated extensively. Here we determine
in detail how the solution branches of Taylor vortex flow (TVF) and spiral vortex flow (SPI) are
connected via intermediate stable solutions, how the spatiotemporal properties change along the
connections, how the stability is transferred between the branches, and where and what kind of
transients occur.

Several theoretical and experimental investigations concern the interaction between TVF,
SPI and a variety of different wavy solutions [2]–[9]. Here, we focus on wavy vortex flow
(WVF) and on wavy spiral vortex flow (wSPI), which play, besides the so-called ribbons
(RIB) [10, 11], a dominant role in the transitions between TVF and SPI. The phrase WVF is used
in the literature to describe a state of ‘wavy Taylor vortex flow’ (wTVF) in which the former
Taylor vortices are azimuthally modulated but remain toroidally closed into themselves [1]. For
the sake of clarity we use the abbreviation wTVF. This flow state appears via a secondary,
non-hysteretic forward bifurcation out of TVF [4, 5]. In the majority of publications the
wTVF solution branch has been seen to return to the TVF branch or to undergo higher order
bifurcations [5], [7]–[9], [12, 13] at larger driving.

On the other hand, toroidally closed TVF appears via a primary stationary bifurcation out
of the rotationally symmetric, axially homogeneous basic circular Couette flow (CCF). Also the
two axially symmetry degenerated oscillatory SPI states with left or right winding helicoidal
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vortices [14] appear via primary bifurcations out of CCF in a symmetric Hopf bifurcation
together with the RIB state. The latter can be seen as a nonlinear superposition of the two
oppositely propagating SPI to an axially standing wave. Typically, RIB are unstable close to
onset but can become stable later on under certain conditions [15]. The stability of TVF and SPI
at onset is regulated by the order of their appearance upon increasing the inner cylinder’s rotation
rate �1: the first (second) solution to bifurcate out of CCF is stable (unstable). However, the
second, unstable solution can become stable at larger �1. Which state bifurcates first depends
on the outer cylinder rotation speed [1].

Besides parameter regions with monostability of TVF and SPI, one also observes regions
with bistability of the two states [14]. When moving a control parameter out of this region, one
solution loses its stability and the system undergoes a transition to the remaining stable state,
i.e. from TVF to SPI or vice versa [14]. Bifurcation theoretical considerations and symmetry
arguments [2, 3] as well as amplitude expansion techniques in [4] suggest that the solution
branch of stable TVF is connected to unstable RIB via stable wTVF. In [2] a ‘jump bifurcation’
from the end of the stable wTVF branch to the stable SPI branch is expected. Such a behaviour
has indeed been observed in our numerical calculations and it also seems to have been found in
experiments by Tagg et al [6]2.

Golubitsky and Langford [3] presented qualitative bifurcation diagrams for a wide range of
radius ratios 0.43 < η < 0.98 showing that some properties (forward or backward bifurcation,
stability changes, etc) strongly depend on η. The investigations of [2]–[4] further suggest
the existence of a branch of wSPI that are sometimes also called modulated spirals. They
bifurcate out of SPI but it was not possible to track this branch or to connect it to another
solution. We found that these wSPI mediate the transition from SPI to TVF. Indeed, the
symmetry considerations in [3] suggest a connection from SPI to unstable RIB via wSPI. Iooss’
analysis [4] gives good guidance for the investigation of wSPI and wTVF.

This paper is roughly subdivided into three parts. After an introduction to the system
and numerical methods in section 2, section 3 represents the essential part. It deals with the
bifurcation behaviour of wTVF and wSPI which mediate the transition between the well-known
TVF and SPI. Section 4 elucidates some further properties of these structures and explains
the necessary topological and symmetry transformations that accompany the transition. All
modes that are significant for the respective pure structures (TVF or SPI) are also excited in
the spectra of the relaxed and stable wavy structures. However, they can also be observed in
the transient solutions of the Navier–Stokes equations (NSE). The spatiotemporal behaviour of
these transients is presented in section 5. The final section 6 summarizes our main findings.

2. System and theoretical description

We report the results obtained numerically for a Taylor–Couette system with co- and counter-
rotating cylinders, fixed radius ratio η = r1/r2 = 0.5, no-slip boundary conditions at the cylinder
surfaces and axial periodic boundary conditions determining the axial wave number k. The fluid
in the annulus between the cylinders (gap width d = r2− r1) is considered to be isothermal and
incompressible with kinematic viscosity ν.

Cylindrical coordinates r, ϕ and z are used to decompose the velocity field into a radial
component u, an azimuthal one v, and an axial one w:

u= u er + v eϕ + w ez. (1)

2 Experiments cited in [3] as [1988] on p 508.
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The system is governed by the NSE

∂tu=∇
2u− (u ·∇)u−∇ p. (2)

Here, lengths are scaled by the gap width d and times by the radial diffusion time d2/ν for
momentum across the gap, and the pressure p is scaled by ρν2/d2. The Reynolds numbers

R1 = r1�1d/ν, R2 = r2�2d/ν (3)

enter into the boundary conditions for v. R1 and R2 are just the reduced azimuthal velocities of
the fluid at the cylinder surfaces; �1 and �2 are the respective angular velocities of the cylinders.

2.1. Numerical methods

Results in this paper were obtained by two different numerical methods. First, the classical MAC
code that we already presented in [14, 16] uses a Galerkin expansion (G) in one dimension
ϕ as well as finite differences (D) in three dimensions r , z and t which are of first-order
forward differences in time and second-order centered differences in space. In the following,
we abbreviate this code as ‘G1D3’. Additionally, we used a new ‘G2D2’ code with Galerkin
expansion in two dimensions, ϕ and z, and finite differences of second order in r and of first
order in t .

f (r, ϕ, z, t)=
mmax∑

m=−mmax

nmax∑
n=−nmax

fm,n(r, t) ei(mϕ+nkz), f ∈ {u, v, w, p}. (4)

Here, fm,n(r, t) are the amplitudes of the mth azimuthal and the nth axial mode. Their variation
in the two variables r and t is determined using finite differences. We checked that mmax =

nmax = 4 provided sufficient accuracy, cf appendix A for more details.
Note that the decomposition (4) of the velocity fields allows one to impose restrictions

and conditions on the modes m ∈ {−mmax . . . mmax}, n ∈ {−nmax . . . nmax}, e.g. to enforce certain
symmetry conditions during the numerical calculations by suppressing those modes that do not
belong to mode subspaces being of interest.

2.2. Amplitude equations

Here, we briefly mention results that pertain to amplitude equation approaches. Iooss et al [4]
determined the phase diagram for wTVF. Furthermore, in [11] the bifurcation behaviour of
wTVF and wSPI was investigated via amplitude equations near the bicritical point within a
three-mode model. Therein appear the two critical SPI modes of a left-handed SPI (L-SPI)
A ≡ (m, n)= (1, 1) and of a right-handed SPI (R-SPI) B ≡ (1,−1) together with the critical
TVF mode C ≡ (0, 1):

Ȧ = A F(|A|2, |B|2, |C |2) + iq1 B C C,

Ḃ = B G(|A|2, |B|2, |C |2) + iq1 A C̄ C̄, (5)

Ċ = C H(|A|2, |B|2, |C |2) + q0 A B̄ C̄ .

Here, the overbar denotes complex conjugation. The coupling constants q0, q1 are real. The
action of these coupling terms is shown in the figure below.
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Invariance under axial translation and reflection of the Taylor–Couette system imposes
restrictions on the otherwise arbitrary complex functions F, G, H . Thus, equation (5) has to
be invariant under the operation (A, B, C)↔ (B, A, C̄), which is caused by the symmetry
operation z→−z. Within the limitations of such a model, it was shown that the wTVF branch
connects the stable TVF with the unstable RIB solution. The latter then destabilizes against
SPI. The investigations [11] suggest the existence of wSPI connecting the stable SPI with the
unstable RIB branch. We are not aware of any experimental or further theoretical investigations
of wSPI.

Golubitsky et al [3] investigated the isotropy subgroups and their relationships. Their
results give reason to expect a stable branch of wSPI connecting SPI and RIB. The following
figure shows the possible transitions between CCF, TVF, SPI, RIB, wTVF and wSPI.

CCF
wSPI

wTVF
RIB

SPI

TVF

The transition from wSPI to RIB was not yet observed, so we indicated that by a thinner
line. Another branch of so-called twisted vortices connecting TVF and RIB is described in
the literature [2, 3] but we do not investigate it in this paper.

The following figure summarizes the content of the above figure and suggests transitions
from SPI to TVF and vice versa via

TVF
wTVF
−→L99 RIB99K←−

wSPI
SPI.

3. Bifurcation behaviour and phase diagrams

Here, we present bifurcation properties of TVF, SPI, RIB and of the connection branches of
wTVF and wSPI as a function of R1 and of wavenumber k and, furthermore, various planar and
three-dimensional phase diagrams in (k, R2, R1) parameter space.

3.1. Bifurcation behaviour as a function of R1

Figure 1 illustrates the stable (solid lines with closed symbols) and unstable (dashed lines with
open symbols) bifurcation branches of TVF (blue circles), L-SPI (orange triangles), RIB (green
lozenges), wTVF (black squares) and wSPI (black lozenges) versus R1 at two fixed values of
R2 that are indicated by the arrows (a) and (b), respectively, in the phase diagram of figure 3.

New Journal of Physics 11 (2009) 053002 (http://www.njp.org/)

http://www.njp.org/


6

105 110 115 120 125 130
0

1

2

3

4

5

|u
m

,n
|

(1,1) & (1,–1)
(1,1) & (1,–1)

(m,n) = (1,1) (1,1)

(1,–1)

(0,1) (0,1)

EF

(0,1)

(a) TVF
L-SPI
RIB
wSPI
wTVF

70 80 90 100 110
R1

0

1

2

3

4

5

6

|u
m

,n
|

(1,1)

(1,–1)

(0,1)
(0,1)

(1,+1) & (1,–1)(1,1)

EG

(1,1)

(b)

Figure 1. Bifurcation diagrams for different vortex structures versus R1 for
(a) R2 =−100 and (b) R2 =−25 (cf arrows in figure 3). Full (dashed) lines
with filled (open) symbols refer to stable (unstable) solutions. Shown are the
dominant radial flow field amplitudes |um,n| at mid-gap for TVF (m, n)= (0, 1),
L-SPI (m, n)= (1, 1), RIB (|u1,1| = |u1,−1|), wTVF, and wSPI. The two wavy
solutions are characterized by u0,1 6= 0 and u1,±1 6= 0 while uSPI

0,1 = 0= uTVF
1,±1. The

amplitude of (1,−1) of wSPI is very small and therefore cannot be distinguished
from the abscissa in this plot. The bifurcation branches connecting to an
R-SPI (m, n)= (1,−1) that are identical due to mirror symmetry are not shown
here for the sake of visibility. Further control parameters are η = 0.5 and k =
3.927. Here and in the other figures, the symbols primarily distinguish different
structures. Calculations were typically done for many more parameters than the
symbol locations.

3.1.1. Wavy Taylor vortices. We start our discussion of the bifurcation diagrams in figure 1(a)
with a stable TVF state in region E. Upon decreasing R1, TVF remains stable until R1 reaches
the grey coloured region F. There, two modes (1, 1) and (1,−1) emerge with exactly the same
amplitude when stable wTVF (black squares) that is characterized by the three modes (0, 1),
(1, 1) and (1,−1) bifurcates secondarily out of the TVF. The latter loses stability to wTVF
there. When decreasing R1 further, the amplitude ratio |u1,±1/u0,1| increases and the modulation
amplitude, i.e. the waviness of wTVF, is getting stronger and stronger.

Obviously, the (1, 1) and (1,−1) amplitudes of the wTVF state approach the unstable RIB
branch. Because the system is unable to stay in the RIB solution, the m = 0 and one of the m = 1
amplitudes (u1,−1 in this case) vanish at the left boundary of region F, whereas the amplitude
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Figure 2. Schematic bifurcation diagram for a suitably chosen control parameter
containing the results of figures 1 and 3. Stable (unstable) solutions are displayed
as solid (dashed) lines. Thin arrows indicate the transients corresponding to the
‘jump bifurcation’ mentioned in [2].

of the remaining m = 1 mode (here u1,1) jumps up to the dominant mode of the only remaining
stable solution, the pure SPI (here L-SPI) structure (orange line with triangles). The pure SPI
state is stable in the whole parameter range displayed in figure 1(a). Thus, SPI exist bistably
with TVF in region E and bistably with wTVF in region F.

Note that for the sake of visibility, we presented only one of the two SPI branches in the
figures, namely the L-SPI. The connection from TVF to the R-SPI branch via the RIB state
looks exactly the same in the absence of symmetry breaking effects.

3.1.2. Wavy spiral vortices. Figure 1(b) displays the bifurcation behaviour for R2 =−25
where wSPI appear. Consider first a stable SPI state (here an L-SPI identified by the dominant
(1, 1) mode) in region E. This solution loses its stability at the right boundary of region G
where two further modes, (0, 1) and (1,−1), arise. (1, 1) and (1,−1) interact nonlinearly and
generate a (0, 2) mode which, however, has a significantly smaller amplitude than the (0, 1)

mode. With decreasing R1, (0, 1) as well as (1,−1) increase monotonically, whereas the (1, 1)

mode decreases and seems to indicate an approach to the unstable RIB branch. But as in the
case of figure 1(a), the system cannot develop the RIB state and all modes disappear at the left
boundary of region G except (0, 1) which jumps up to the stable TVF solution. Thus, TVF and
wSPI exist bistably in region G.

For the parameters that we have chosen here, the (1, 1) and (1,−1) amplitudes of the wSPI
state differ significantly. Furthermore, the amplitudes of the respective (1, 1) modes belonging
to the pure L-SPI and to the wSPI structure are almost identical, whereas the amplitude of the
(1,−1) mode in the wSPI solution is very small. However, this is not always the case. In fact,
we found wSPI solutions with a more moderate mode ratio for other control parameters that are
not discussed in this paper.

At the left borders of regions F and G in figure 1, the amplitudes of the respective modes
of wTVF and wSPI show a significant jump. We tried to stabilize these solutions to the left of
the grey coloured regions by enforcing symmetry conditions which are consistent with wavy
solutions and not with SPI. But this always led to a stabilization of the RIB solution. So, we
could not find with these mode restrictions the expected branches of unstable wSPI and wTVF
at R1 to the left of regions F and G and thus terminated our search.

Figure 2 contains the results of section 3.1 in a schematic bifurcation diagram with a
suitable control parameter, say, e.g. R2. Note again that the branches of wTVF and wSPI do not
end exactly in the RIB branch due to the instability of the latter. The transients from unstable
RIB to TVF and SPI, respectively, are indicated by thin arrows.
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Figure 3. Phase diagram for TVF, SPI, wTVF, and wSPI for η = 0.5 and
k = 3.927.

Region A B C D E F G

TVF – s u s s u s
SPI s – s u s s u
wTVF – – – – – s –
wSPI – – – – – – s

stable (s), unstable (u), nonexistent (–).

The blue line with circles and the orange line with triangles denote the
bifurcation thresholds for TVF and SPI, respectively, out of CCF. Filled (open)
symbols indicate that the respective solution is stable (unstable) at threshold.
In region E, both TVF and SPI are stable. The black solid lines describe the
upper bifurcation thresholds of wTVF (�) and wSPI (�) out of TVF and SPI,
respectively. The wavy structures are stable in the respective grey coloured
regions G and F and become unstable at the black dashed curve with open
symbols (�, ♦). The vertical arrows (a) and (b) indicate the parameter range
of the bifurcation diagrams of figure 1. The crosses denote the two parameter
combinations for which the k dependence of the bifurcation behaviour is shown
in figure 4. The solid violet line α in the inset divides region E into two parts:
E1 with SPI amplitudes |u1,±1| larger than TVF amplitudes |u0,1| and vice versa
for E2. The dot-dashed violet curve β describes the projection of the ‘bicritical’
curve, i.e. the intersection line of the TVF and SPI bifurcation surfaces in
(k, R2, R1) phase space onto the (R2, R1) plane at k = 3.927. The thick violet
point denotes the ‘bicritical’ point γ for this k.

3.2. (R2, R1) phase diagram

Figure 3 exhibits a more detailed version of the phase diagram—an earlier version of
which has been presented in figure 2 of [14]. It covers the whole (R2, R1) parameter range
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investigated here. The bifurcation diagrams of figure 1 were obtained along the arrows labelled
by (a) and (b).

The blue (orange) line denotes the well-known primary bifurcation threshold for TVF
(SPI) out of the basic CCF state. The upper boundaries of regions F and G are the thresholds
for forward bifurcations of wTVF out of TVF and of wSPI out of SPI, respectively. We
found both wavy structures only as stable solutions within the parameter range investigated
here. In its current form, our code does not allow to follow unstable wTVF and wSPI
solutions.

The structure of the phase diagram in figure 3 can be summarized as follows: bistable TVF
and SPI occur in region E above the grey coloured domains F and G. In region C (below F)
only SPI but not TVF and in region D (below G) TVF but not SPI are stable. Decreasing R1

from region E into the grey domains, TVF transfers its stability to wTVF in G while SPI lose
their stability to wSPI in F. At the lower dashed boundaries of F and G, there are transients to
the remaining monostable SPI and TVF, respectively. The latter bifurcate out of the CCF at the
bifurcation thresholds marked by the orange line with triangles and the blue line with circles,
respectively.

These bifurcation thresholds that were obtained from full nonlinear simulations with the
G2D2 code differ slightly from those in figure 2 of [14] that were obtained via linear stability
analysis with a shooting method; see also appendix A.

3.2.1. SPI and TVF amplitudes in region E. TVF and SPI exist as bistable solutions in region
E of figure 3. However, their dominant mode amplitudes u0,1 and u1,±1, respectively, are in
general different. Region E can therefore be subdivided into two subregions E1 and E2 by the
violet α-curve in the inset of figure 3. The SPI amplitude is larger than that of TVF in E1 and
vice versa in E2.

We would like to point out that the α-curve always lies above the upper boundary (filled
lozenges) of region G. Thus, upon decreasing R1 it is the vortex state with the smaller amplitude
(TVF in E1 and SPI in E2) that becomes unstable against growth of waviness at the upper solid
black curve of the grey regions. The state with the larger amplitude remains stable all the way
down to its respective bifurcation threshold out of CCF.

3.2.2. Point of higher codimension. Within our numerical resolution, all thresholds converge
in one single point of higher codimension that is marked by γ in figure 3. Therefore, direct
continuous transitions between wTVF and wSPI are only possible by crossing this γ -point.
Otherwise, regions F and G are separated by region E with bistable TVF and SPI. For the
wavenumber k = 3.927 chosen here, the γ -point is given by Rγ

1 = 95.25 and Rγ

2 =−73.69. For
other k, it moves towards higher R1 and smaller R2. The curve that it follows in (k, R2, R1)

space is discussed in more detail in the following section. The projection of this curve onto the
(k = 3.927, R2, R1) plane is labelled with β in figure 3.

3.3. Wavenumber dependence

Besides the bifurcation behaviour exhibited in figure 1 as a function of R1, we also investigated
the wavenumber dependence of wavy structures for fixed R1 and R2. As two representative
examples, we took the values marked by the crosses in figure 3.
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Figure 4. Bifurcation diagrams for different vortex structures versus
wavenumber k. For further description cf caption of figure 1. The two parameter
combinations (a) R1 = 120, R2 =−100 and (b) R1 = 96, R2 =−25 are marked
by crosses in figure 3.

3.3.1. Bifurcation diagrams. Starting with a stable TVF state at R1 = 120 and R2 =−100 in
region E of figure 4(a) and decreasing k, the TVF remains stable above the right boundary of the
grey coloured area F. There, it becomes unstable against wTVF. Besides the (0, 1) TVF mode,
contributions of the now growing (1, 1) and (1,−1) modes are responsible for the azimuthal
modulation of wTVF. With decreasing k and the growing contribution of the (1, 1) and (1,−1)

amplitudes to the mode spectrum, the modulation of the wTVF becomes stronger and stronger.
At the left boundary of region F, most mode amplitudes undergo a transient to zero except
(1, 1), which jumps up to the dominant mode of stable L-SPI as indicated by the black arrows
in figure 4(a).

In the case of smaller |R2| that is shown in figure 4(b) for R1 = 96 and R2 =−25, the grey
region G of stable wSPI lies above the bistable region E. Thus, the boundary of region F (G)
in figure 3 of wTVF (wSPI) moves downwards (upwards) with increasing wavenumber. In that
respect, it is helpful to use the phase diagram in the (k, R1) plane shown in figure 5 in order to
visualize the shape of the different regions A–E.

3.3.2. Phase diagrams. For the outer cylinder Reynolds number R2 =−100 considered here,
all thresholds and stability regions are topologically equivalent to those in the (R2, R1) plane of
figure 3. The bifurcation thresholds come together in the γ -point at kγ

= 5.18 and Rγ

1 = 108.
The thick violet α-curve denoting equal SPI and TVF amplitudes in region E (cf figure 3)
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Figure 6. Phase diagram in the (k, R2) plane for R1 = 115. See figure 3 for a
description of the regions and the bifurcation thresholds. The solid thick violet
line represents the α-curve subdividing region E into region E1 and E2; cf
figure 3. In the hatched area, perturbations with larger wavenumbers destabilize
the solutions with periodicity 2π/k. See text for further explanations.

degenerates to a straight vertical line in figure 5. Hence, the amplitudes of TVF and SPI for
k = kγ are equal to each other independently of R1. However, this does not hold for other R2 as
shown later.

Finally, figure 6 gives a cross section of the three-dimensional (k, R2, R1) phase space
at R1 = 115. The lines of the bifurcation thresholds and stability boundaries are arranged
somewhat like onionskins. Especially, there exist two γ -points where all curves coincide. These
γ -points move together for smaller R1. Again, the solid thick violet line represents the α-curve
subdividing region E into two regions E1 and E2 as described in section 3. It also originates in
the γ -points. In region E2 of figure 6, TVF and SPI coexist stably such that the TVF amplitude
is larger than the SPI amplitude. This region should be enclosed completely from below either
by the black line with filled lozenges, i.e. the bifurcation threshold to stable wSPI in region G,
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Figure 7. (a) Phase diagrams in (k, R2, R1) space in different sections. Phase
space regions with different vortex states are identified by the lettering of
figure 3. The grey section at k = 3.927 is shown also in figure 3, the yellow one
at R2 =−100 in figure 5, and the green one at R1 = 125 in figure 6, respectively.
(b) Neutral stability surfaces for TVF (blue) and SPI (red). The black line marks
their intersection, i.e. the β-curve of the points of higher codimension.

or by the bifurcation threshold to another solution. We have indications that the two black lines
delimiting region G enter indeed into the left γ -point as indicated there schematically. However,
we were not able to trace out the stability boundaries of the wSPI in region G between the left
γ -point at k ' 2 and the minimum at k ' 4: the hatched area in figure 6 indicates schematically
that roughly in this area perturbations with larger wavenumbers prematurely destabilize the TVF
and the SPI solutions.

3.4. Phase diagram in (k, R2, R1) space

Figure 7 provides overviews over the bifurcation surfaces and the regions where different vortex
states are realized in the three-dimensional parameter space spanned by k, R2, and R1. Some
axis directions are inverted in order to enhance the clearness and visibility of the figure. In (a),
the grey section at k = 3.927 is shown also in figure 3, the yellow one at R2 =−100 in figure 5,
and the green one at R1 = 125 in figure 6, respectively.

Figure 7(b) displays the two intertwined ‘mountains’ that are formed by the surfaces of the
bifurcation thresholds for m = 0 TVF (blue) and m = 1 SPI (red) out of CCF. These surfaces
were obtained by linear stability analyses of the CCF with a shooting method. The outermost
surface locates the bifurcation thresholds for vortices that are stable at onset. On the other hand,
the vortex solution that bifurcates from the inner one is unstable at onset.

The black line is the β-curve of the γ -points of higher codimension where the surfaces
of TVF and SPI stability thresholds intersect in (k, R2, R1) space. The parabolic shape of the
β-curve with its apex at (k = 3.52, R2 =−70.8, R1 = 94.1) explains that for any fixed R1 >

94.1, there are two γ -points and none when R1 < 94.1.
Outside of the mountains in figure 7(b), the CCF state is stable so that vortices appear as

solutions of the field equations only inside the mountains. The contour of these blue and red
mountains can be seen in the sections of figure 7(a) as blue and red lines, respectively.
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The interior of the mountains is layer-like subdivided into regions that are lettered from A
to G (cf figure 3) in which different vortex states appear. The outermost layers are A (stable SPI)
for small R2 and B (stable TVF) for moderate |R2|. The core of the mountain is formed by the
region E of bistable TVF and SPI. In order to enhance visibility we do not show its subdivision
into regions E1 and E2 in figure 7(a). For larger R1, i.e. below the horizontal surfaces in figure 7,
there appear, however, further instabilities [1] of TVF and SPI that are not investigated here.

4. Properties of wavy structures

Pure structures such as TVF and SPI are low dimensional in the sense that their ϕ- and z-
dependence can be represented by only a few spatial Fourier modes. Apart from higher axial
harmonics, TVF is characterized by the modes (0,±1). Apart from higher axial harmonics and
the complex conjugates, TVF is characterized by the mode (0, 1). Pure L-SPI are dominated
by the (1, 1) mode with higher harmonics and complex conjugates on the diagonal, m = n, in
Fourier space. Pure R-SPI are dominated by the (1,−1) mode with higher harmonics on the
diagonal, m =−n, in Fourier space.

In contrast to SPI and TVF, wavy structures contain a mixture of these basic modes and in
addition also their nonlinearly driven mode combinations.

4.1. Classification

We distinguish between vortex structures with open and closed vortices as illustrated in figure 8.
There, we schematically characterize the structures by lines of constant phase that delimit
the coloured stripes in figure 8 on an azimuthally unrolled cylindrical surface in the annulus.
The inner squares cover one azimuthal period of 2π in the horizontal direction and one axial
period of λ= 2π/k in the vertical direction. For better visibility, the structures are periodically
continued slightly beyond these periodicity boundaries.

Note that the lines of constant phase of the open SPI and wSPI vortices cross the horizontal
boundaries, whereas those of TVF and wTVF are azimuthally closed into themselves. Generally
speaking, in open left winding vortices the (1, 1) mode is significantly larger than the other
modes, (0, 1), (0, 2) and (1,−1). In a pure L-SPI, the latter three modes and their complex
conjugates indeed vanish. But with growing admixture of these modes the wavy modulation of
the left winding spiral structure becomes stronger.

When, say, u1,−1 has become equal to u1,1 then one has either a RIB with u0,1 = 0 or a
wTVF with u0,1 6= 0. Note that the RIB that bifurcate as an unstable solution out of the CCF at
the m = 1 SPI threshold are characterized by u0,1 = 0 but u0,2 6= 0.

4.1.1. wSPI versus cross-spirals. So-called cross-spirals with azimuthal wavenumber m = 2
were found close to onset at different control parameters than those investigated here [15].
These patterns are basically a superposition of L- and R-SPI with different amplitudes. Similar
to the wSPI considered here, these cross-spirals establish a connection between the SPI branch
and the RIB branch. The latter are, however, stable at those parameters [15, 17]. The closeness
to the SPI bifurcation threshold implies that the magnitude of the dominant SPI mode and of the
admixture from the minority SPI mode is still small. Then, the cross-spiral state could well be
explained to be basically a superposition of two m = 2 SPI modes, say, (2,1) and (2,−1) with
different amplitudes.
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L−SPIRIB wSPIwTVFTVF

Figure 8. Schematic structure of different vortex patterns in an azimuthally
unrolled cylindrical surface. In the coloured regions, the radial flow might be
outwards and in the white ones inwards. The inner squares cover 2π in the
horizontal direction and λ= 2π/k in the vertical direction. For better visibility
the structures are periodically continued slightly. The plots are obtained by
superimposing contributions from the modes u0,1, u1,1, u1,−1 and their complex
conjugates with different weights as qualitatively shown in the table:

(0, 1) (1, 1) (1,−1)

TVF • – –
wTVF •
RIB – • •
wSPI • ◦
L-SPI – • –

The symbols denote large (•), moderate ( ), small (◦) mode amplitudes and the
absence (−) of a mode. The wSPI is taken here to be left winding; in its right
winding mirror image the mode (1,−1) would be largest.

4.1.2. wTVF occurring at large R1. For rather moderate R2, another regime of stable wTVF
exists far beyond, say, R1 = 130, i.e. beyond the driving strengths considered here. These
structures are discussed, e.g. in [4, 5, 7, 18] where they are usually called WVF. From the
topological as well as the bifurcation-theoretical point of view, these WVF states behave
similarly to the wTVF investigated here in the sense that both bifurcate forwards out of TVF.
However, WVF at large R1 does not end in the RIB branch as our wTVF but e.g. in another
wavy structure containing wavy inflow or outflow boundaries or in the same TVF branch [4, 5].

4.2. Structure of wTVF and wSPI

Structural properties of wTVF found in region F of the phase diagrams and of wSPI in region
G, respectively, are illustrated in figure 9. It contains the results of numerical calculations done
at (a) R1 =−120, R2 =−100 for wTVF and at (b) R1 = 96, R2 =−25 for wSPI. The top row
shows isosurface plots of the azimuthal vorticity ∂zu− ∂rw. Having tested alternatives [19],
we found this vorticity component to be an adequate means for visualizing shape, motion and
changes of the vortex structures presented in this work.

For the parameters of figure 9, wTVF are more deformed than wSPI. The mode amplitudes
of the radial velocity field in the middle row of figure 9 show that in the wTVF (a) significantly
more modes are excited than in the wSPI (b). However, we also investigated other control
parameters where the wSPI contained the same modes with stronger magnitudes.

The bottom part of figure 9 displays vector plots of the velocity field in the (r, z) plane.
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Figure 9. Structure of (a) wTVF at R1 = 120, R2 =−100 and of (b) left
winding wSPI at R1 = 96, R2 =−25. Top: isosurfaces of the azimuthal vorticity
∂zu− ∂rw = 70 (red) and −70 (green), respectively. For better visibility, two
periods are plotted in the axial as well as the azimuthal direction. The flat
rectangular surfaces that intersect the vortices contain the sign of the azimuthal
vorticity in the (r, z) plane. Middle: mode amplitudes |um,n| of the radial velocity
field over the (m, n) plane. Bottom: vector plots of u(r, z) and w(r, z) in a
ϕ = const plane covering one axial wavelength.
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(a)

(b)

Figure 10. Isosurfaces of azimuthal vorticity ∂zu− ∂rw of (a) wTVF at R1 =

120, R2 =−100, k = 3.927 and (b) wSPI at R1 = 115, R2 =−50, k = 4.8. The
first column displays the complete structure. The second column gives the part
coming for (a) from the m = 0 TVF mode subspace and for (b) from the m = n
L-SPI mode subspace, respectively. The third column gives the part resulting
from the complementary rest, i.e. m 6= 0 (a) and m 6= n (b), respectively.
Red (green) indicates positive (negative) vorticity. For the sake of visibility,
two periods are plotted in the azimuthal direction. The table lists the values
identifying the respective vorticity isosurfaces and the respective maximal
azimuthal vorticity.

Col 1 Col 2 Col 3

(a) 60/220 60/175 15/155
(b) 90/210 90/200 6.5/25

Structural decomposition. It is interesting to elucidate the geometrical properties of wTVF
and wSPI by separating the hydrodynamic fields into two parts: the first one contains only
contributions from the mode subspace of the respective pure structure, i.e. m = 0 for TVF and
m = n for L-SPI. The second part is the rest that is generated by all modes in the respective
complementary mode subspaces, i.e. m 6= 0 for wTVF and m 6= n for a left winding wSPI.

Figure 10 shows the contributions from these two parts to the total vorticity field with the
help of vorticity isosurfaces for specific values. The table lists these values together with the
maximal azimuthal vorticities of the respective parts. Comparing these numbers, one sees again
that the contribution from the pure structure’s subspace dominates for the parameters chosen. In
particular for the wSPI of figure 10(b), the contribution from the complementary mode subspace
is very small. In general, wTVF as well as wSPI may show a broad mode spectrum depending on
the control parameters. In that case, simple three mode models can be expected to be insufficient
to describe the bifurcation branches.
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Figure 11. Bifurcation diagrams of the frequencies ωm,n with which the complex
mode amplitudes um,n(r, t) of the radial velocity field in the middle of the
gap oscillate for different vortex states with wavenumber k = 3.927 at R2 =

−100 (a) and R2 =−25 (b). The corresponding bifurcation diagrams of the
moduli |um,n(r, t)| are shown in figure 1. Full (dashed) lines with filled (open)
symbols refer to stable (unstable) solutions. Thin orange lines show linear spiral
frequencies, i.e. imaginary parts of the SPI eigenvalues of the NSE linearized
around the CCF state.

We finally would like to emphasize that because the isovalues are different, the plots in
figure 10 give only a qualitative impression of the ‘deformation’ of the vorticity isosurfaces
resulting from the m 6= 0 and m 6= n mode subspace contributions, respectively.

4.3. Frequencies

Figure 11 shows the frequencies ωm,n with which the complex mode amplitudes um,n(r, t) of the
radial velocity field, say, in the middle of the gap oscillate in the different vortex states.

SPI and RIB. Pure spirals and ribbons grow via a primary Hopf bifurcation with a common,
finite frequency out of CCF. For increasing R1, the SPI frequency increases (as in figure 11(b))
as long as |R2| is small enough [14]. For stronger counter-rotating systems, on the other hand,
the spiral frequencies decrease with increasing R1 (as in figure 11(a)—see also figure 3 in [14])
near onset. This is a nonlinear effect since the linear spiral frequencies, i.e. the imaginary parts
of the SPI eigenvalues (thin yellow lines in figure 11) of the NSE linearized around the CCF
state, increase with increasing R1 for any R2.

In this context, it is remarkable that the frequencies of the unstable RIB solution (green
dashed lines with lozenges in figure 11) still show the same behaviour as the linear frequencies.

Wavy Taylor vortices. In the grey region F of figure 11(a), we show by the black line with squares
the frequencies of wTVF for which the mode amplitudes are shown in figure 1(a). Since wTVF
are time-periodic rotating states that do not propagate axially, all mode frequencies are either
zero, e.g. ω0,1 = 0, or multiples of ω1,1 = ω1,−1. Thus, e.g. ω2,0 = 2ω1,1. So, the dynamics of

New Journal of Physics 11 (2009) 053002 (http://www.njp.org/)

http://www.njp.org/


18

wTVF is rather simple while the spatial structure—at least when measured by the broad mode
spectrum of figure 9(a)—is complex.

It is noteworthy that our wTVF bifurcate at the right border of region F out of the TVF
state with a frequency ω1,1 that is practically identical with the fully developed, nonlinear SPI
frequency (yellow line with triangles). We have found this peculiar behaviour also for other
parameters at the boundary of the grey F regions of the phase diagrams of figures 3, 5–7(a).
Linear investigations by Iooss et al [4] do not address the issue of the wTVF frequencies
at the bifurcation out of TVF. We currently have no explanation why at onset of wTVF the
perturbations of m = 0 TVF coming from m 6= 0 modes with small amplitudes are rotated
azimuthally with the same rotation frequency as the fully developed, large-amplitude SPI.

With decreasing R1, the frequency ω1,1 of wTVF increases towards the RIB frequency.
But then, at the left border of the wTVF existence region F, the frequency of the (1,1)-mode
undergoes a jump down to the frequency of a pure spiral (see also figure 1(a)). The final state
after the jump is either an L-SPI or an R-SPI depending on the details of the history of the
system.

Wavy spiral vortices. The black lines with lozenges in figure 11(b) describe the frequencies
of some of the modes that contribute to a left winding wSPI. The distribution of the mode
amplitudes in Fourier space is shown in the histogram of figure 9 for the parameter combination
R1 = 96, R2 =−25, i.e. right at the left boundary of region G in figures 1(b) and 11(b). There,
by far the largest mode is (1, 1) with a frequency ω1,1 ' 23 followed by the higher harmonic
(2, 2). But the structurally and dynamically next important mode is (0, 1), which oscillates with
a frequency ω0,1 '−4.3. The presence of these different frequencies with significant mode
amplitudes makes the wSPI state quasiperiodic in time.

The spatiotemporal behaviour of such a left winding wSPI can be seen as a superposition of
a major, azimuthally rotating and thereby upwards travelling wave ∝ |u1,1|cos(ϕ + kz−ω1,1t)
and an axially downwards propagating, rotationally symmetric modulation ∝ |u0,1|cos(kz−
ω0,1t) (cf [20]). However, for other parameters, contributions from other modes, e.g. (1,−1),

can become significant. With decreasing R1, all but (0, 1) wSPI frequencies decrease.
At the left border of region G, there occurs the transition to TVF already discussed in

figure 1(b). Thus, ω0,1 drops to zero there as indicated by the black arrow in figure 11(b).

5. Spatiotemporal behaviour of transients

In this section, we discuss the spatiotemporal behaviour of the transformation of unstable SPI
into stable TVF and of unstable TVF into stable SPI. The unstable SPI are prepared as initial
states in region D of the phase diagrams in figures 3, 5, 6, and 7(a) where they coexist with
monostable TVF. On the other hand, unstable TVF coexists with monostable SPI in region C of
the aforementioned figures.

Preparation of unstable states. The preparation of unstable TVF and SPI as initial state was done
in two different ways. One obvious way (i) was to first restrict the modes to the subspace m = 0
for TVF or to m = n for an L-SPI, respectively, and then release this stabilizing restriction
after a sufficient relaxation time in the remainder of the simulations. Another way (ii) was
to judiciously use random noise as initial condition. Then, for some parameter combinations,
first the unstable solution would grow before finally a transformation to the final stable state
would occur. For both scenarios, we observed wavy vortices as intermediate flow during the
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Figure 12. Time evolution of the dominant mode amplitudes |um,n| during
the transformation TVF→ wTVF→ SPI (a) and SPI→ wSPI→ TVF (b)–(d).
Parameters for (b) R1 = 92.2, R2 = 0, (c) R1 = 85, R2 =−25 and (d) R1 =

90, R2 =−25 lie in region D of the phase diagrams in figures 3, 5–7(a) where
SPI is unstable and TVF is monostable. For (a) the parameters R1 = 115, R2 =

−100 lie in region C where TVF is unstable and SPI is monostable. In each case,
k = 3.927. In (a) and (b), random noise was used as initial condition—scenario
(ii), whereas in (c) and (d) the L-SPI was stabilized by mode restrictions—
scenario (i). See text for further details. The arrows in (a) and (b) mark snapshot
times in figure 13.

transients to the respective final states so that the transformations are TVF→ wTVF→ SPI
and SPI→ wSPI→ TVF, respectively.

Time evolution of modes. Figures 12(c) and (d) depict the time evolution of the dominant
mode amplitudes |um,n| after the preparation scenario (i) during the transformation SPI→
wSPI→ TVF for two different control parameters in region D. In both cases, the system is
driven away from the unstable SPI solution by computer noise only. However, the parameters
(R1 = 90, R2 =−25) of figure 12(d) lie closer to region E where SPI are stable than the
parameters (R1 = 85, R2 =−25) of figure 12(c). Thus, the unstable SPI in figure 12(d) survives
longer than the one in figure 12(c). In both cases, there appears during a narrow time interval of
about one radial diffusion time wSPI as intermediate short-lived flow.

Figures 12(a) and (b) depict the time evolution of the dominant mode amplitudes |um,n|

after the preparation scenario (ii). Here, simulations were done with random noise in all modes
as initial conditions. The control parameters were fixed in region C (R1 = 115, R2 =−100 in
figure 12(a)) and region D (R1 = 92.2, R2 = 0 in figure 12(b)), respectively. When the noise
magnitude exceeds about 10−6 then our code generates for these parameters first the unstable
solution before finally a transformation to the final stable state occurs similar to the situation

New Journal of Physics 11 (2009) 053002 (http://www.njp.org/)

http://www.njp.org/


20

in figures 12(c) and (d). For smaller noise levels, however, the code generates immediately
after having realized within about one diffusion time the unstable CCF state the stable final
vortex state, i.e. TVF in region D and SPI in region C as one would expect considering the
linear growth rates. It seems that for our parameters, larger noise forces the system faster into a
nonlinear intermediate regime that favours the unstable flow before finally the stable state wins.
In any case, it is quite remarkable that, e.g. in figure 12(b) at R2 = 0, first the SPI and then a
wSPI grows before finally TVF takes over.

Structural changes. The arrows in figures 12(a) and (b) mark the times where we made the
eight snapshots of figure 13 that depict the isosurfaces of the azimuthal vorticity. They give a
reasonably good impression of the structure of vortex flow. The snapshot sequences illustrate
the structural changes during the transformations TVF→ wTVF→ SPI in figure 13(a) and
SPI→ wSPI→ TVF in figure 13(b). Further details can be seen in the movies available from
stacks.iop.org/NJP/11/053002/mmedia. Note that we use 4π cylinders in order to present the
whole azimuthal variation in a single three-dimensional plot. In the axial direction, the plots
cover two wavelengths.

Starting with random noise, a pure TVF state (figure 13(a1)) is established almost
instantaneously on the time scale of figure 12(a). As an aside, we mention that this holds also
when the initial noise distribution contains less intensity in the TVF modes than in the rest
of Fourier space. With growing amplitudes of m 6= 0 modes the former rotational symmetric
structure becomes more and more deformed, but the isovorticity surfaces are still closed in
figures 13(a2)–(a3). However, the tubes formed by the isosurfaces narrow at a certain ϕ position.
This means that the maximal vorticity within the (r, z) plane at this ϕ position decreases in
time—the vortex intensity becomes weaker there. Note that this indentation of the vortex tubes
as well as the defects rotate with the whole structure. However, this rotation intentionally cannot
be seen in figure 13 due to the stroboscopic nature of the selected snapshot times.

Finally, the isosurfaces are completely constricted and separated (figures 13(a4)–(a5)).
After displacing the ends of the tubes (figure 13(a6)), new connections are established in
figure 13(a7) and the vorticity increases again to the final distribution in the pure R-SPI shown
in figure 13(a8).

In figure 13(b), we investigate the transient SPI→ wSPI→ TVF for the parameter
combination of figure 12(b) that lies in region D. The snapshot times are indicated by the
arrows in figure 12(b). As in the case described above, we start with random noise. Now, an
unstable L-SPI (figure 13(b1)) emerges first and then becomes disturbed by a growing m = 0
mode (figure 13(b2)). As in the above-described case, the two vortex tubes get indented and
constricted, then separated, and thereafter displaced from each other (figures 13(b3)–(b5)) at a
single ϕ position. Then the isosurfaces reconnect to form closed vortex tubes (figures 13(b6)
and (b7)) and finally pure TVF in figure 13(b8).

Thus, all in all, the pairwise vortex disconnections and reconnections proceed by the
generation of a pair of rotating defects at the position of minimal azimuthal vorticity.

6. Summary

We have investigated the bifurcation behaviour, dynamics and structural properties of Taylor
vortices, spiral vortices, and their corresponding modulated structures, namely toroidally
closed wavy Taylor vortices and helical wavy spirals as well as the so-called ribbons in the
Taylor–Couette system.
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Figure 13. Snapshots of the isosurfaces of the azimuthal vorticity ∂zu− ∂rw =

±60 at eight times marked by arrows in figure 12 during the transformation
(a) TVF→ wTVF→ SPI of figures 12(a) and (b) SPI→ wSPI→ TVF of
figure 12(b). Red (green) colouring denotes positive (negative) vorticity. The
control parameters (a) (R1 = 115, R2 =−100) and (b) (R1 = 92.2, R2 = 0) and
k = 3.927 are those of figure 12(a) and (b), respectively. We use 4π cylinders
in order to present the whole structure in a single three-dimensional plot. In
the axial direction, the plots cover two wavelengths. For further details see the
movies available from stacks.iop.org/NJP/11/053002/mmedia.
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Under periodic axial boundary conditions, the transition from unstable TVF to stable SPI
is performed by generating stable wTVF. Similarly, stable wSPI mediate the transition from
unstable SPI to stable TVF. The wTVF solution branch was known already from the literature
to connect the TVF with the unstable RIB state. We elucidated this connection in quantitative
detail. Furthermore, we found evidence that the wSPI branch connects the SPI solution to the
unstable RIB solution. Since, however, the RIB solution is unstable in both cases, the system
‘jumps’ to the remaining stable solution when following the wavy states to their end close to the
RIB state.

This behaviour reflects the fact that in solution space (i) the parameter region F (G) of
stable wTVF (wSPI) separates the region E of bistable SPI and TVF from region C (D) with
monostable SPI (TVF) and that (ii) the stable wTVF (wSPI) coexist bistably with SPI (TVF)
in region F (G). This holds in the complete (k, R2, R1) phase space. In region E, near the
bifurcation threshold of wTVF out of TVF, the amplitude of TVF is larger than that of SPI and
vice versa for wSPI bifurcating out of SPI. On the other hand, if one starts in the monostable
region C (D) with unstable TVF (SPI) then this unstable solution decays and transforms into
stable SPI (TVF). The time needed for this transient increases with decreasing distance from
the region E of bistability of SPI and TVF.

The wavy structures of wTVF and wSPI ‘live’ in a more complex Fourier subspace with
more nonzero Fourier modes than for the pure structures of TVF and SPI. However, there are
spatiotemporal restrictions; in the case of the axially nonpropagating and temporally periodic
wTVF solution, the (1, 1) mode is equal to the (1,−1) mode. In the case of the temporally
quasi-periodic left winding wSPI solution the main (1,1) mode contributes to an azimuthal
rotation and axial propagation of the whole structure with a frequency ω1,1 that differs from
the frequency ω0,1 with which a rotationally symmetric modulation wave is propagating axially
downwards.

Concerning the frequency of wTVF, we made the puzzling and unexplained observation
that the infinitesimal (1,±1) wavy perturbations of TVF at the onset of wTVF are azimuthally
rotated with the same frequency as the large-amplitude (1,±1) modes in the nonlinear SPI that
coexist bistably with TVF and wTVF there.

The wavenumber dependence of the wavy structures is similar to that of the pure ones. All
structures investigated here lie in the three-dimensional (k, R2, R1) phase space inside a volume
that is bounded by two intertwined surfaces over the (k, R2) plane. The two surfaces are the
bifurcation thresholds of TVF and SPI, respectively. At their intersection curve also the other
bifurcation thresholds of wTVF, wSPI, and RIB come together.

We analysed the spatiotemporal changes in the flow during the transformation from
unstable TVF to stable SPI in region C and from unstable SPI to stable TVF in region D.
Using among others, a flow visualization with isosurfaces of the azimuthal vorticity, we could
follow in detail how the closed vortex tubes of TVF are constricted and broken up in pairs of
rotating defects and how then the tube ends move axially apart and reconnect to generate the
helicoidal vortex tubes of the SPI. The transformation from SPI vortex tubes to closed TVF
tubes proceeds in an almost inverse manner to the above-described scenario containing also
constriction, disconnection, separation and finally reconnection of the tubes.
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Figure A.1. Comparison of the bifurcation thresholds in the (k, R2) plane at
R1 = 115 computed by G2D2 (symbols) with the linear stability boundaries
of CCF against TVF (blue curve) and SPI (orange curve) perturbations. Open
(closed) symbols denote bifurcation thresholds of unstable (stable) solutions.

Table A.1. Averaged value E(·) and standard deviation σ(·) of the relative errors
δk = |kG2D2/klin| − 1 and δR2 = |R2,G2D2/R2,lin| − 1 in k and R2 taken from the
bifurcation thresholds of figure A.1.

E(δk) σ (δk) E(δR2) σ (δR2)

TVF 0.034 0.039 0.09 0.20
SPI 0.053 0.050 0.15 0.29

Appendix A. Numerical method

We used both codes, G2D2 and G1D3, as mentioned in section 2. The advantages of G2D2 are
that with decomposition (4) of the fields, one can easily restrict the set of modes in order to
enforce symmetries and that it is faster than G1D3.

For our calculations we chose time steps complying with the diffusive von Neumann
condition as well as with the advective Courant–Friedrichs–Levy condition. We found mmax =

nmax = 4 in combination with a radial discretization interval of 1r = 0.05 and time steps
of 1t ≈ 0.0005 to be sufficiently accurate. Several control runs with mmax = nmax = 8 and
1t < 0.0005 did not show appreciable differences in the parameter range investigated here. All
in all, we found that G2D2 yields slightly different amplitudes than G1D3 and better accuracy
concerning the bifurcation thresholds.

To convey an idea of the accuracy of the G2D2 code, we compare in figure A.1 the
bifurcation thresholds of TVF (blue) and SPI (orange) obtained by a shooting method [21] (solid
lines) from the linearized NSE with those obtained by extrapolating nonlinear G2D2 amplitudes
to zero (symbols) for R1 = 115 as a representative example.

We found the numerical errors of G2D2 relative to the shooting results to be comparable
with those of G1D3. Table A.1 gives averaged relative errors and their standard deviations for
both methods.
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