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A B S T R A C T

We study ferrofluidic Taylor Couette flow under the influence of radial inflow and outflow in combination with an external applied magnetic field in a finite-length
cavity via direct numerical simulations. As is the case for no magnetic field, the base state (cylindrical Couette flow and modified circular-Couette flow in presence of
a transverse magnetic field component, respectively) with an external magnetic field is stabilized for any radial inflow and strong radial outflow, while the system
becomes slightly destabilized for weak radial outflow. The particular parameter range for destabilization depends on the field strength of the applied magnetic field.
Slightly increasing the field strength shrinks the range, while it grows for larger field strengths. In general, a larger field strength tends to minimize and compensate
the effect of any radial flow, resulting in bifurcation thresholds (critical Reynolds number vs. radial flow) which have less curvature, i.e. they are more flat. We
elucidate the origin of this effect to be in the symmetry breaking nature of the transverse magnetic field itself. Azimuthal velocity isocontours are shifted different
strong due to radial flow, either in the part of the annulus that is aligned with the direction of the applied magnetic field or perpendicular to it. In particular, the
modulation amplitude in the isocontours perpendicular to the field increase. As a result the flow is locally stabilized with different strength, so that the overall
stabilization is weaker relative to the situation without any applied field. This diminishing curvature effect with variation of the radial flow becomes more pro-
nounced with stronger applied magnetic fields.

1. Introduction

The flow between two concentric cylinders driven by differential
rotation, Taylor-Couette flow, has played a paradigmatic role for the
development of hydrodynamic stability theory [1] and testing appli-
cations of low dynamical system theory [2]. The geometric simplicity
allows for well-controlled experiments that allow verification of nu-
merical simulations, which together shed light on hydrodynamic sta-
bility and the transition to turbulence.

In absence of any magnetic field, the stable azimuthal circular
Couette flow (CCF) of a Newtonian fluid between a rotating inner cy-
linder and a stationary outer cylinder becomes centrifugally unstable
upon exceeding a critical rotation speed. The result is the appearance of
axisymmetric toroidal closed Taylor vortices, typically called Taylor
vortex flow (TVF) [1]. However, the critical values for the appearance
of these vortex structures depend on various parameters that can be
altered in several ways. For instance, if both cylinders are permeable
and a radial through-flow is imposed through them, the system stability
changes. Based on linear stability analysis for axisymmetric dis-
turbances, the flow is stabilized by a radial inward flow or strong radial
outward flow, while a weak radial outward flow destabilizes the system
slightly [3–9].

Another situation in which the stability can be altered is by con-
sidering non-ordinary fluids such as ferrofluids [10], which are fluids

consisting of a dispersion of magnetized nanoparticles in a variety of
liquid carriers that are stabilized against particle agglomeration
through the addition of a surfactant monolayer on the particles. In the
absence of any magnetic field, the nanoparticles are randomly oriented
so that the fluid has zero net magnetization. In this case, the nano-
particles alter the viscosity and the density of the fluid very little. Thus,
in the absence of any external field a ferrofluid behaves as an ordinary
(classical) Newtonian fluid. However, when a magnetic field of suffi-
cient strength is applied, the hydrodynamical properties of the fluid,
such as the viscosity, can change dramatically [11–14], resulting in
very different dynamics.

The magnetoviscous effect in ferrofluids is highly dependent on the
orientation of the magnetic field with respect to the fluid flow [15].
Under a symmetry-breaking transverse magnetic field, all flow states in
the Taylor-Couette system (TCS) become intrinsically three-dimen-
sional [16–18], increasing the already large number of flow states
known to exist in the system [1,2,19–22]. Any external applied mag-
netic field results in a general stabilization of the basic state as well as
shifting bifurcation thresholds for any flow structure. If the external
applied magnetic field is either axial, radial or azimuthal orientated, its
orientation does not play any role qualitatively. Only quantitative dif-
ferences in the distance of the up-shift of primary bifurcation thresholds
can be detected [13,14,16–18,23,24]. However, it is crucial to note that
the presence of a transversal magnetic field alters the classical
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symmetries in TCS. The classical TCS, where a Newtonian fluid is
confined by end walls, is invariant to arbitrary rotations R about the
axis and the reflections Kz about axial mid-height, and time translations

t0, generating the symmetry group × ×SO Z R(2) 2 . Here the first two
factors consist of the purely spatial symmetries, while the third factor
corresponds to the temporal symmetries generating the one-dimen-
sional translation group R. Under an imposed transverse magnetic field,
these symmetries are broken and the flow is inherently three-dimen-
sional for any nonzero flow and magnetic field such that only a single
finite mode contribution is stimulated [14]. Thus, the resultant flow has
even more complex symmetries [18,25]. There is a reflection Kz

H about
the annulus’ mid-height plane that occurs with an inversion of the
magnetic field direction. In addition, there is a rotation invariance R H

for discrete angle along with an inversion of the magnetic-field direc-
tion with the angle being aligned with the direction that the magnetic
field enters the annulus.

Here we consider the interaction of two mechanisms, the magnetic
field interaction with a ferrofluid and a radial through-flow, to provides
new insight for various situations such as rotating filtration. The basis
for rotating filtration is a radial flow at a permeable inner cylinder of a
Taylor-Couette cell [26]. Rotating filtration is widely used commer-
cially for extracting plasma from whole blood [27–29]. The approach
has also been proposed as a method for other filtration applications as
well [30–38]. Although a radial through-flow between two porous cy-
linders is somewhat different from rotating filtration in which the outer
cylinder is non-porous, it can provide insight into the fundamental
mechanisms that alter the stability of Taylor-Couette flow when a radial
flow is present. To our knowledge this paper represents the first in-
vestigation of the interaction between a radial imposed through-flow
and an externally applied magnetic field on a ferro-fluid in the Taylor-
Couette geometry.

2. System parameters and the Navier–Stokes equation

We consider a standard TCS (Fig. 1) consisting of two concentric,
independently rotating cylinders. Within the gap between the two cy-
linders is an incompressible, isothermal, homogeneous, Newtonian,
mono-disperse ferrofluid of kinematic viscosity and density . The
inner and outer cylinders have radii Ri and Ro, and the inner cylinder
rotates with angular velocity i while the outer one is stationary. We
consider no-slip rigid (stationary) boundary conditions (RBC) at the
endwalls as well as periodic boundary conditions (PBC) instead of

Fig. 1. Taylor-Couette system. Schematic of the Taylor-Couette system (TCS)
illustrating radial flow and an externally applied homogeneous magnetic field

= HH eext x x . The stable Couette velocity profile v r( , ) is shown (not to scale).
The radial flow at the permeable walls of the concentric cylinders can be out-
ward >( 0), as shown, or inward ( < 0). The used coordinate system is il-
lustrated at bottom right.

Fig. 2. Subcritical and supercritical flow states. (a) The transition boundary
between subcritical and supercritical flow states (in absence of magnetic field,

=s 0x ) for periodic boundary conditions (PBC, = 2) corresponding to in-
finitely long cylinders and rigid boundary conditions (RBC, = 10) for a finite
length system. The solid (red) curve shows the results of a linear stability
analysis [45]. The horizontal line corresponds to the value for the critical
Reynolds numbers Rec with = 0. Open and filled diamonds in (a) indicate the
parameters (Re, ) for subcritical and supercritical flow states, for which radial
velocity profiles =u r d( /2) at mid-gap are shown in b( ) for = c0, ( ) = 20
(here the supercritical flow is given as a wavy vortices with a single dislocation
[9]) and d( ) = 5, respectively. The inset in (a) gives a close-up of the region
for which has destabilizing effect. See text for further description. The
Figs. 2–4 and 7–9 have been generated by Xmgrace..
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endwalls for comparison and code verification. No-slip boundary con-
ditions are used on the cylinders. In a cylindrical coordinate system
r z( , , ), the velocity field is = u v wu ( , , ) and the corresponding vor-
ticity field is × =u ( , , ). The radius ratio of the cylinders,

= R R/i o, is kept fixed at 0.5. For stationary endwalls (RBC) the aspect
ratio for axial height L is set to = =L d/ 10, while for PBC it is set to

= 2, where =d R Ro i is the gap between the cylinders.
A homogeneous magnetic transverse orientated magnetic field

= HH eext x x (Fig. 1) is considered (with Hx being the field strength
normal to the axis of the system). The length and time scales of the
system are set by the gap width, d, and the diffusion time, d /2 , re-
spectively. The pressure in the fluid is normalized by d/2 2, and the
magnetic field H and the magnetization M can be conveniently nor-
malized by the quantity µ d/ /0 , where µ0 is the permeability of free
space. These considerations lead to the following set of non-dimen-
sional hydrodynamical equations [18,39]:

+ + = + × ×pu u u M H M H( · ) ( · ) 1
2

( ),t
2

(1)

=u· 0.

A radial through-flow is imposed at both the inner and outer
permeable cylinders with radial Reynolds number

= u R / ,i i

with > 0 for outflow and < 0 for inflow. On the cylindrical surfaces,
the dimensionless velocity fields are =r z Reu( , , ) ( (1/ 1), , 0)i i
and =r zu( , , ) ( (1 ), 0, 0)o , where ui is the radial velocity at the
non-dimensional inner cylinder radius, =r R d/i i , and is the radial ve-
locity at the non-dimensional outer cylinder radius, =r R d/o o . The

(inner) rotating Reynolds number is

=Re R d/ .i i i

Since the outer cylinder is at rest and only the inner cylinder rotates,
we replace Rei with Re.

Fig. 3. Parameter space diagram Re( , ) with varying sx . Parameter space dia-
gram for the transition boundary between subcritical and supercritical flow
states. Shown are (a) the Re( , ) parameter space and b( ) the normalized
µ( , )c,0 parameter space ( = =µ Re Re/ ( 0)c c,0 ). Insets present close ups of the
region, in which has destabilizing effect onto the flow structures. Points 1 to 4
indicate the parameters for maximal destabilization due to . The curve for

=s 0.0x is a replot of the one presented in Fig. 2.

Fig. 4. Radial velocity profiles for flow states at different . Radial velocity
profiles =u r d( /2) for = =Re Re( )/ ( ) 1.1c (10% above the transition to su-
percritical flow states) at (a) = b8;( ) = c0;( ) = 1; d( ) = 4.
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Eq. (1) is to be solved together with an equation that describes the
magnetization of the ferrofluid. Using the approach of Niklas [13] and
some further simplifications (see Appendix for details) leads to the
following ferrohydrodynamical equations.

+ +

= × × × × ×

+ ×

p

s

u u u

u H H u H H u

H

( · )

{ [ ·( )] 1
2

( ) ( )

( ) ,

t M

N

2

2 2
2

2

2 (2)

where is the symmetric component of the velocity gradient tensor
[18,39], and 2 is the material-dependent transport coefficient [25,39,40].
(In the present work, we set = 0.82 , based on experimental observa-
tions [40–43].) The effect of the magnetic field and the magnetic
properties of the ferrofluid on the velocity field can be characterized by
a single parameter, the magnetic field or the Niklas parameter [13],
here =s sN x

2 2, with

= +
+

s H c2(2 )
(2 )

.x
x N2

2 2 2 (3)

Here, is the magnetic susceptibility of the ferrofluid, which can be
approximated by Langevin’s formula [44], and the Niklas coefficient cN
depends on the properties of the ferrofluid and magnetic field [13,25],
as described in the Appendix. The numerical approach to solving the
equations is outlined in the Appendix.

3. Results

3.1. Parameter space and flow detection

In the absence of any magnetic field ( =s 0x ) or radial through-flow
( = 0), the basic flow state, CCF, becomes unstable against axisym-
metric TVF at a critical Reynolds number of =Re 67.6c for = 10
( =Re 68.1c for PBC) for = 0.5 with no radial flow or magnetic field.
Based on a linear analysis of infinitely long cylinders, the corresponding
critical Reynolds number is =Re 68.19c and critical wavenumber is

=k 3.16c [46]. Hence, the aspect ratios of = 10 for RBC and = 2 for
PBC are reasonable choices given the similar axial wavenumber of

=k .
The stability thresholds for RBC, PBC, and a linear analysis [45]

with radial flow, but without any applied magnetic field, are shown in
Fig. 2(a). The results for the numerical code for PBC with an axial
wavenumber of =k match the linear stability analysis over the range

10 20, thereby verifying the code. The system is stabilized for
< 0 as well as 1.9 for RBC [ 1.3 for PBC and linear analysis]

(see inset for detail), whereas it becomes slightly destabilized for
<0 1.9 [ <0 1.3]. The minimum in the stability curve, corre-

sponding to =Re Re/ 0.97c for RBC [ =Re Re/ 0.99c for PBC and linear
analysis], occurs at = 1.05 [ = 0.65 for PBC and linear analysis]. The
shift of the stability threshold to a lower Re for the finite length system
is related to the Ekman layers adjacent to the endwalls [47–53]. These
subcritical structures trigger the centrifugal instability to grow at lower
Re.

For the remainder of this paper we will restrict our investigation to
RBC and focus on the influence of variation of an external applied
magnetic field in a finite length system. For context, Fig. 2(c) and (d)
shows examples of the radial velocity at the mid-gap as a function of the
axial position for subcritical and supercritical flow states

(corresponding to diamond symbols in Fig. 2(a)) in the absence of a
magnetic field for zero radial flow ( = 0, Fig. 2(b)), radial outflow
( = 20, Fig. 2(c)), and radial inflow ( = 5, Fig. 2(d)). The horizontal
lines in Fig. 2(a) correspond to the values for the critical Reynolds
numbers Rec with = 0 for PBC and linear stability (upper horizontal
line) and RBC (lower horizontal line). The short gray line in (a) as well
in Fig. 3 at 7.5 indicate the change in subcritical flow structures
from TVF ( 7.5) to wTVF ( 7.5) (see also [9]). Note that

=k 3.16c for RBC is slightly different than =kc , used either for PBC
and linear analysis. For all cases, the subcritical flow states (dashed
lines) display vortical motion (peaks in radial velocities) due to Ekman
endwall pumping that decrease rapidly moving away from endwall. The
radial velocity has a flat, nearly constant profile in the middle portion of
the length of the annulus with a value that depends on the applied
radial through-flow : zero for no radial flow, above zero for positive ,
and below zero for negative . On the other hand, for supercritical flow
states the peaks and valleys in profile of the radial velocities represent
outflow and inflow regions of pairs of vortical structures. The extrema
are similar in amplitude except near the endwalls where the Ekman
pumping amplifies their magnitude. The profiles in Fig. 2(b and d) have
relatively uniform peaks corresponding to a supercritical flow state of
TVF. On the other hand, Fig. 2 c( ) for radial outflow has a profile
characteristic of wavy vortex flow, wTVF, plus a dislocation, as pre-
viously reported by Serre et al. [9]. As will be shown shortly, the pre-
sence of a magnetic field changes the spatio-temporal structure of such
dislocations as well as the range of parameter space over which they
exist.

3.2. Bifurcation and stability thresholds

A transverse magnetic field influences the stability system. We re-
strict this study to three magnetic field strengths: = =s s0.3, 0.6x x and

=s 0.9x , which are all within range of experimental studies [54,55].
Fig. 3 illustrates the stability thresholds between subcritical and su-
percritical flow states as the radial through-flow is varied for different
magnetic field strengths including =s 0.0x , which was shown in
Fig. 2(a)). In absence of radial flow, corresponding to = 0, the well
known stabilizing effect of an external magnetic field is obvious
[13,14,16–18,23,24], as the stability thresholds are shifted upward to
larger Re in Fig. 3(a) (horizontal dotted lines indicate the critical
thresholds for = 0). Likewise, the entire stability curve shifts upward
with increasing sx . However, the behavior with the radial flow, , is
similar, regardless of the magnetic field strength. That is, radial inflow,

< 0, stabilizes the transition, small outflow corresponding to small
positive destabilizes the transition slightly, and sufficiently large
positive stabilizes the transition.

Interestingly, the parameter region in which the destabilization
occurs due to a small radial outflow does not change monotonically
with the magnetic field strength. In the absence of a magnetic field,

=s 0.0x , the destabilized region is <0 2.05. The region shrinks for
=s 0.3x to <0 1.75 and then shrinks further for =s 0.6x to

<0 1.2 before it increases again for =s 0.9x to <0 1.8. The
value for that has the maximum destabilizing effect, c, also depends
non-monotonically on the applied magnetic field, as is evident from the
points labeled 1–4 in Fig. 3(a). Furthermore, the degree of destabili-
zation changes with the applied magnetic field, as is evident in Fig. 3 b( )
where the normalized critical Reynolds number, = =µ Re Re/ ( 0)c,0 , is
plotted as a function of . Initially, =µ 0.968c,0 at 1.05 without a

Fig. 5. Visualization of different flow states for = 0 and = 1. Visualization of the different 10% supercritical flow states, = 1.1, at = 0 ( I( ) left) and = 1 ( II( )
right) and sx as indicated. Shown are (1) isosurfaces of azimuthal vorticity = u wz r [red (dark gray) and yellow (light gray) colors correspond to positive and
negative values, respectively; (2) azimuthal vorticity in the r( , ) plane at mid-height. (3) vector plots u r z w r z[ ( , ), ( , )] of the radial and axial velocity components
(including (3.1) the azimuthal velocity v and (3.2) the azimuthal vorticity ;(4) the radial velocity u z( , ) on an unrolled cylindrical surface in the annulus at mid-gap
[red (yellow) color indicates in (out) flow]. Thick black lines in (3) corresponds to contours =v Re/ 0.5 (left) and into = 0 (right), respectively. Both Figs. 5 and 6
have been generated by MATLAB..
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Fig. 6. Visualization of the different flow states for = 4 and = 8. As Fig. 5 but for = 4 ( I( ) left) and = 8 ( II( ) right), respectively.
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magnetic field, =s 0.0x . It increases to =µ 0.98c,0 at 0.75 for
=s 0.3x to =µ 0.992c,0 at 0.51 at =s 0.6x before it increases again to

=µ 0.987c,0 at 0.95 for =s 0.9x .
Unlike the destabilizing effect for small positive , which remains

essentially unchanged with an applied magnetic field, the stabilizing
effect depends strongly on sx . Increasing the magnetic field strength sx
changes the curvature of the bifurcation thresholds to become less
convex and wider (Fig. 3 b( )). This means that for sufficiently negative
, a stronger magnetic field decreases the stability, while increasing the

magnetic field stabilizes the flow for 6 (Fig. 3(a)).

3.3. Flow structures – spatial dynamics

Fig. 4 presents the radial velocity profiles =u r d( /2) for selected
radial through-flows = 8, 0, 1, 4 and different field strengths

=s 0.0, 0.3, 0.6, 0.9x , as indicated. The velocity is shown for a value of
Re that is 10% above the transition to supercritical flow, designated as

= =Re Re( )/ ( ) 1.1c . For any given value of the imposition of a
magnetic field affects the amplitude of the mid-gap radial velocity, but
otherwise makes little difference. The magnetic field increases both the
inflow (negative u) and outflow (positive u) magnitudes, though the
increase is larger for the outflow. The case of = 8 is a bit different
for the radial inflow than those with 0. This is a result of the vor-
tical structure becoming wavy, evident as the flattened inflow radial
velocity.

Further insight into the physics leading to the stabilizing and de-
stabilizing effects of radial flow combined with a transverse magnetic
field can be obtained from Figs. 5 and 6, which visualize the different
flow states for fixed = 8, 0, 1, 4 and change of magnetic field
strength sx . The top row of both figures shows isosurfaces of the azi-
muthal vorticity, = u wz r , where red (dark gray) and yellow
(light gray) colors correspond to positive and negative values, respec-
tively. For all the contours expand at (constant value = ±25) as sx
increases indicating that the entire vortex structure becomes stronger.
However for =s 0x the flow remains purely axisymmetric (Fig. 5(a)),
the classical TVF. Increasing sx forces the well known 2-fold symmetry
due to a transverse magnetic field [25,17] (Figs. 5 and 6(2)(4)). Re-
garding the 50% contour line of the azimuthal velocity =v Re/ 0.50
(Fig. 5(3.1)) one sees an increase in modulation amplitude, minima and
maxima increase, respectively, similar to the radial velocity profiles
presented in Fig. 4. Same observations also hold for Fig. 6with the main
difference, that the 50% contour line of the azimuthal velocity

=v Re/ 0.50 is moving outwards for larger and inwards for smaller .
Here it is worth to mention that Fig. 6 presents a wavy TVF state
(wTVF), which already has finite =m 1 mode contribution (Fig. 6(2),
(4)). However, the Figs. 5 and 6 can’t explain the change in stabilizing
effect due to interaction of transverse field and radial flow, i.e. the
modification in curvature in Fig. 3, it’s more flat.

In order to get insight into the physics leading to the modification in
the bifurcation/stability thresholds, we focus on the azimuthal flow,
which is the dominant flow in the annulus (at least for the conditions
investigated here). Therefore we consider the 50% contour line of the
dimensionless azimuthal velocity =v Re/ 0.50, but for two different
positions in the bulk, = 0 (aligned with the magnetic field) and

= /2 (perpendicular to the magnetic field) and their variation for
different radial flows at 10% supercritical flow states =Re Re/ 1.1c as
illustrated in Fig. 7 (vertical gray line at =r 1.5 indicates the mid-gap of
the bulk). Independent of an applied magnetic field, the contours are
shifted into the direction of the radial flow ; for negative inwards
and for positive outwards, respectively (i.e. in Fig. 7 from left to right
with increasing ). In addition to shifting outward, the bulges in the
contours increase with . These contours grow in radial extent with
increasing radial outflow as the imposed radial flow enhances the
vortical outflow. Likewise, the inward bulges in the contour grow for
radial inflow, indicating enhancement of the vortical inflow.

However, a significant point we neglected so far is the fact that the

Fig. 7. Azimuthal velocity contour profiles in bulk gap with variation of for
flow states at different sx . Azimuthal velocity contour profiles for =v Re/2 in
the bulk gap ([1, 2]) at [ 8, 4, 2, 0, 1, 2, 3, 4, 8] (from left to right) as
indicated for (a) =s b0.0;( )x =s c0.3;( )x =s d0.6;( )x =s 0.9x (see also Figs. 5 and
6). Note the vertical gray lines at =r 1.5 indicates the mid-gap of the bulk.
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bulges in the contours for = 0 (along the applied field direction, solid
black curves in Fig. 7) and = /2 (perpendicular to the applied field
direction, dashed red curves in Fig. 7) are different as soon a finite
magnetic field (s 0x ) is present. More important, the differences
detected in the contours increases with increasing field strength sx and
such is largest for =s 0.9x (Fig. 7 d( )). However, in addition the differ-
ence also increases with at any constant value sx (from left to right in
Fig. 7); smallest for = 8 and largest for = 8. In any case the var-
iation of amplitude (between min and max) is larger for = /2.

Fig. 8 gives another perspective of the change in contours with in-
creasing through flow at different magnetic field strength sx . It clearly
indicates the outward move of contours ( =v Re/2) and growing bulges
with increasing radial flow . The differences for = 0 and = /2
enlarges with sx and in parallel becomes more pronounced with in-
creasing . This variation in profiles for = 0 (along the applied
magnetic field) and = /2 (perpendicular to the applied magnetic
field) is the reason for the change in shape and expansion of the bi-
furcation threshold with sx (Fig. 3). The larger sx , the larger the dif-
ferences between both azimuthal positions (Figs. 7 and 8). Due to this
spatial variation, for a given radial flow, the system can be at the same
time locally subcritical and locally supercritical, respectively. This
partial sub- and supercritical flow regimes within the bulk delays the
grow of any fully developed supercritical vortex structure. Finally the
overall result is a weaker stabilizing effect with , the curves in Re( , )
parameter space (Fig. 3) become wider.

3.4. Angular momentum transport

To further characterize the modification of the stability thresholds
due to interaction of radial flow and magnetic field, we examine the
behavior of the angular momentum and torque for a variety of flow
conditions. Fig. 9 shows the mean (axially and azimuthally averaged)
angular momentum =L r r v r Re( ) ( ) /z, , as a function of the radius r for
different and sx . As before all flow states are 10% supercritical,

= 1.1, as already used before.
All curves show one main characteristic. In general, the angular

momentum curves follow a monotonically varying trend. The profiles
indicate typical behavior in that positive angular momentum decreases
outward from the rotating inner cylinder to the stationary outer cy-
linder. Depending on both parameters, radial flow and field strength
sx , one observes a more constant region (plateau-like) within the bulk.
In absence of radial flow = 0 (Fig. 9 b( )) the angular momentum de-
creases with almost constant slope from inner towards the outer

Fig. 9. Variation in angular momentum and torque for flow states at different .
Angular momentum =L r r v r Re( ) ( ) /z, versus the radius r for flow states at (a)

= b8;( ) = c0;( ) = 1; d( ) = 4. The insets show corresponding variation
of the dimensionless torque =G J (see text for details) versus the radius r. All
flow states are 10% supercritical and correspond to flow states presented in
Figs. 5 and 6.

Fig. 8. Velocity contour profiles with variation of for flow states at different
sx . Azimuthal velocity contour profiles for =v Re/2 at and sx as indicated (see
also Fig. 7). Note the vertical line at =r 1.5 indicates the (radial) center of the
bulk. Solid lines indicate contours at = 0 (field aligned) and dashed lines
indicate contours at = /2 (perpendicular to the field.), respectively.
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cylinder virtually unaffected from the strength sx of an applied mag-
netic field. Here all curves fall on top of each others. Increasing to-
wards more positive values (Fig. 9(c and d)) result in the formation of a
more and more ‘belly-like’ shape, which grows outwards and result in
steeper slopes of the curves near the outer cylinder. On the other hand
radial inflow, < 0, (Fig. 9(a)) results in steeper slopes near the inner
cylinder with the profiles flatten slightly in the middle of the annular
gap to form a horizontal plateau. Further, we focus closer on the effect
onto the curves due to variation in sx . For positive an increase in sx
results in a minimizing of the ‘belly’ structure evolving for larger
(Fig. 9 c d( , )); the curves move downwards. Interestingly the effect of
increasing sx for negative radial flow, , is just opposite. The internal
plateau shape structure in Fig. 9(a) becomes diminished as the curves
move upwards. Thus, larger sx ‘simplify’ the curves with respect to the
angular momentum.

The insets in Fig. 9 show the corresponding variation of the di-
mensionless torque =G J within the annulus. In calculating the
torque we used the fact that for a flow between infinite cylinders the
transverse current of the azimuthal motion, =J r u[ ]A t r A t

3
, ,

(with A
rd dz

rl2 ), is a conserved quantity [56]. For positive and zero
and increasing sx the torque profile changes from a flat, almost con-

stant mid-gap region towards a parabola, belly-like shape at mid-gap
(insets in Fig. 9(b–d)). As with the angular momentum, the profiles of
G r( ) show a generally monotonically varying trend as sx increases with
very little difference. However, for radial inflow (Fig. 9(a)), the situa-
tion is more complex. As one sees in the inset of Fig. 9, the variation in
the curve due to increasing sx are not monotonic anymore. With respect
to G r( ) decreases near the inner cylinder. For larger sx it decreases,
while for larger it increases instead. However, here in any case an
almost horizontal plateau within the profiles remain preserved.

4. Summary

The present studies provide new insight into the connection and
interaction between radial through-flow and an external applied
homogeneous transverse magnetic and therefrom resulting con-
sequences for instabilities. Aside the stabilizing effect of the magnetic
field, the effect of radial flow is qualitative similar for different mag-
netic field strengths. For any radial inflow and ‘sufficient (fairly)’ large
radial outflow the vortices in the flow structures become suppressed,
which leads to a stabilizing of the basic state, compared to the situation
without any radial flow, i.e. the bifurcation thresholds are moved up-
wards to larger critical values. On the other hand a moderate radial
outflow has the opposite effect, resulting in destabilization of the basic
state. The bifurcation thresholds are moved towards smaller critical
values. This is qualitative analog to the situation in absence of any
applied magnetic field.

However, quantitative there are various significant differences if a
magnetic field is present. First to mention, either the parameter region
for which the radial flow has stabilizing effect, as well as the amount of

destabilization depend crucially on the strength of the applied magnetic
field. No direct and simple correlation can be extracted between field
strength and resulting (de-) stabilizing effect. For small and moderate
field strength the region shrinks, while for larger field strength it ex-
pands again, so that there is no monotonic behavior. Second and even
more interesting is the variation/modulation in curvature, speaking in

Re( , ) parameter space due to variation of the magnetic field. The
larger the magnetic field strength sx , the less pronounced/influence
becomes the effect due to radial flow . Thus the curves Re( , ) para-
meter space become more convex with less curvature, i.e. more flat.
Quantitatively the relative stabilization effect of becomes weaken
with increasing sx . The reason for this modification in the stability
thresholds is found to be originated/forced by the symmetry breaking
nature of a transverse magnetic field itself. In general the vortices
themselves together with the azimuthal velocity iso-contours are
shifted in the direction of the applied radial flow. Thus for radial inflow
the vortex center move inwards while for radial outflow they move
outwards, respectively. However, the symmetry breaking nature of the
transverse magnetic field results in differences in the shift between both
directions along the applied magnetic field and perpendicular to the
field. In particular the modulation amplitude in the iso-contours per-
pendicular to the field becomes stronger/increased. As a result the flow
can be locally stabilized with different strength, so that the overall
stabilization is weaker relative to the situation without any applied
field. As the differences in modifications in the flow aligned with the
field and perpendicular to it increase with increasing field strength sx ,
the overall stabilization becomes also weaker, the curves move to lower
critical values. Thus one could argue the transverse field results in a
local pinning, which reduces the effect of radial flow.

As this work presents the first investigation of the effects of and sx ,
we only considered azimuthal, toroidally closed, =m 0 mode domi-
nated flow structures.Further interesting future work will be the in-
vestigation of the effect radial through flow and magnetic field have on
helical spiral structures. As typically such helical solutions already in-
corporate higher spatio-temporal dynamics, one can expect an even
stronger influence of radial flow and magnetic field, either in internal
dynamics of the flow as well as stability thresholds. Moreover an ex-
pansion to study the combination of ferrofluid flow under either radial
and additional axial through flow could be quite interesting.
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Appendix A. Appendix

A.1. Ferrohydrodynamical equation

Eq. (1) is to be solved together with an equation that describes the magnetization of the ferrofluid. Using the equilibrium magnetization of an
unperturbed state in which the homogeneously magnetized ferrofluid is at rest and the mean magnetic moment is orientated in the direction of the
magnetic field, we have =M Heq . The magnetic susceptibility of the ferrofluid can be approximated by the Langevin’s formula [44], where we
set the initial value of to be 0.9 and use a linear magnetization law. The ferrofluid studied corresponds to APG933 [54]. We consider the near
equilibrium approximations of Niklas [13,23] with a small value of M M|| ||eq and small magnetic relaxation time : × u| | 1. Using these
approximations, one can obtain [18] the following magnetization equation:

= × × +cM M u H H1
2

,N
eq 2

2 (4)

where
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= +c µ H µ/(1/ /6 )N
2

0
2 (5)

is the Niklas coefficient [13], µ is the dynamic viscosity, is the volume fraction of the magnetic material, is the symmetric component of the
velocity gradient tensor [39,18], and 2 is the material-dependent transport coefficient [25,39,40], here fixed to 0.8 [40]. Using Eq. (4), we eliminate
the magnetization from Eq. (1) to arrive at the following ferrohydrodynamical equations [39,18]:

+ +

= + + × × +

pu u u

H F H H F H

( · )

[ ·( ) ( )],

t M
s

2

2 2 2
N
2

(6)

where = × × pF u H( /2) , M is the dynamic pressure incorporating all magnetic terms that can be expressed as gradients, and sN is the Niklas
parameter [Eq. (3)]. To the leading order, the internal magnetic field in the ferrofluid can be approximated by the externally imposed field [24],
which is reasonable for obtaining the dynamical solutions of the magnetically driven fluid motion. Eq. (6) can then be simplified as

+ + = × × × × × + ×p su u u u H H u H H u H( · ) { [ ·( )] 1
2

( ) ( ) ( ) ,t M N
2 2 2

2
2

2 (7)

as already presented in Eq. (2).

A.2. Numerical methods

The ferrohydrodynamical equations of motion Eq. (6) are solved [25,24,18] by combining a standard, second-order finite-difference scheme in
r z( , ) with a Fourier spectral decomposition in and (explicit) time splitting. The variables can be expressed as

=
=

f r z t f r z t e( , , , ) ( , , ) ,
m m

m

m
im

max

max

(8)

where f denotes one of the variables u v w p{ , , , }. For the parameter regimes considered, the choice =m 16max provides adequate accuracy. We use a
uniform grid with spacing = =r z 0.02 and time steps <t 1/3800. For diagnostic purposes, we also evaluate the complex mode amplitudes
f r t( , )m n, obtained from a Fourier decomposition in the axial direction:

=f r z t f r t e( , , ) ( , ) ,m
n

m n
inkz

,
(9)

where =k d2 / is the axial wavenumber.
Note that for a ferrofluid in presence of a transverse magnetic field (s 0x ), the symmetries present in classical TCS (arbitrary rotations about the

axis and the reflections about axial mid-height) are broken and the flow is inherently three-dimensional for any combination of non-zero values of the
parameters Re and sx [14,17,18,24].

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in the online version, athttps://doi.org/10.1016/j.jmmm.2019.166363.
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