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A B S T R A C T

We study flow structure modifications due to agglomeration, aggregation and chain formation, also known as
elongational flow effect for the flow of a ferrofluid in the gap between two concentric rotating cylinders. The
system is subjected to either transverse, axial and oblique magnetic field. Consider elongational flow the torque
is found to increase or decrease with variation of elongational flow parameter. Furthermore the 3D flow
structures themselves are modified, e.g. resulting in variation of different energy portions/contents and the
angular momentum transport. The detected modifications are explained by the fact that real ferrofluids consist of
a suspension of particles with a finite size in an almost ellipsoid shape as well as with particle–particle inter-
actions that tend to form chains of various lengths and also have a tendency to agglomerate. To come close to
such realistic situation for ferrofluids, we consider elongational flow effects incorporated by the symmetric part
of the velocity gradient field tensor, which can be scaled by a so-called transport coefficient λ2. The complexity of
structures and modifications depend on the magnetic field configuration. In general complexer oblique fields
result in stronger interactions and modifications.

1. Introduction

Since the classical work by Taylor [1] in 1923 the problem of a
viscous flow confined between two coaxially rotating cylinders has
been given great attention. From these days on this problem has been
greatly studied either theoretically and experimentally and a huge and
rich variety of patterns (toroidally closed and helical) have been de-
tected, e.g. with increasing the relative velocity of inner cylinder. Ex-
actly this large number of different flows is a very attractive feature of
this experiment and has made this problem important.

When describing the hydrodynamics of ferrofluids, it is typically
assumed that the particles aggregate to form clusters having the form of
chains, and thus hinders the free flow of the fluid and increases the
viscosity [2,3]. In this type of structure formation, it is also assumed
that the interaction parameter is usually greater than unity [4], and the
strength of the grain-grain interaction can be measured in terms of the
total momentum of a particle.

First Müller and Liu consider a different type of model equations [5]
based on general principles (including either the Debye theory [6] and
the effective field theory by Shliomis [7,8] as special cases) for mac-
roscopic ferrofluid dynamics, the magnetization’s relaxation equation
includes an additional term that is proportional to the product of the
magnetization’s magnitude and the symmetric part of the velocity
gradient tensor, which can describe an elongational flow scaled by a so-
called transport coefficient λ2. Typically the term λ2 is a material

dependent function [5] of thermodynamic variables such as density,
concentration and temperature, but independent of shear. Moreover it
can be handled as a reactive transport coefficient which does not enter the
expression for entropy production. First theoretical studies of elonga-
tional flows for dilute suspension considering rigid spheroids focused
on elongational viscosity [31] and unveiled a closed form solution for
the associated diffusion equation.

Numerous studies can be found in literature devoted to magnetic
fluids exposed to external which investigate the influence of finite size
particle ferrofluids and their reaction under applied magnetic fields. In
particular mass and heat flow of ferrofluid have been under special
focus. A recent by Hassan et al. [27], consider rotating disk with low
oscillating magnetic field provided deeper understanding of these ef-
fects based on different nanoparticle shape behavior, sphere, oblate
ellipsoid and prolate ellipsoid. Additional the ferro-particles con-
centration has been proven to be mainly responsible for changes in the
physical properties of liquid which distresses the liquid velocity and
temperature distribution [28]. Further works [29,30] used a stretching
surface with focus on unsteady boundary layer flow of ferromagnetic
fluids and heat transfer past the surface.

The present study has been crucially motivated by the recent work
of Storozhenko et al. [9] who investigated different concentrations of
ferromagnetic particles under a rotating magnetic field. They detected a
field driven agglomeration of particles in case of stationary and slow
rotating field, which becomes destroyed for faster rotations. The
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destroy of agglomeration can be seen in a decreasing torque with in-
creasing rotation frequency of the field. In the present work we do not
consider a rotating magnetic field, instead we keep the field constant
(in three different configuration) and change the rotation speed of the
(inner) cylinder instead (Further we consider either outer cylinder at
rest and counter-rotating cylinders). Doing so the effects might be
smaller but similar and going into the same direction as detected in [9].

With the present work, we aim to investigate the influence of
elongational flow effects [10–12], by direct numerical simulations,
considering constant applied magnetic fields (axial, transversal, oblique
[32,17,3]), and vary either inner cylinder rotation speed and/or
transport coefficient λ2. Main focus is the variation of torque and flow
structural behavior under modification of elongated flow, incorporated
over the transport coefficient λ2.

The paper is organized as follow: Following the introduction,
Section 2 describes the system and our methods of investigation. There
we present the field equations for the magnetization and the velocity
field and we describe implications of the presence of the magnetic terms
in the generalized Navier-Stokes equations and finally the full ferro-
hydrodynamical equations of motion. This is followed by Section 3
presenting our main results.

We first discuss the influence of elongational flow onto torque,
angular momentum transport and different energy contents, consider
the system with outer cylinder at rest. Following we repeat these studies
for counter-rotating cylinders before we investigate the modifications of
the 3D flow structures itself.. Therefore we illustrate various quantities,
e.g. energy (content) dependence, and variation of zero-azimuthal ve-
locity with increasing elongational flow. Finally we summarize the
main results with a discussion in Section 4.

2. System setting and the Navier-Stokes equation

We consider a standard Taylor-Couette system (TCS) (Fig. 1) con-
sisting of two concentric, independently rotating cylinders. Within the
gap between the two cylinders there is an incompressible, isothermal,
homogeneous, mono-dispersed ferrofluid of kinematic viscosity ν and
density ρ. The inner and outer cylinders have radius Ri and Ro, and they
rotate with the angular velocity ωi and ωo, respectively. Here, we con-
sider periodic boundary conditions in the axial direction with periodi-
city of length λ and no-slip boundary conditions on the cylinders The
system can be characterized in the cylindrical coordinate system
r θ z( , , ) by the velocity field = u v wu ( , , ) and the corresponding vor-
ticity field ∇ × = ξ η ζu ( , , ). The radius ratio of the cylinders, R R/i o is
kept fixed at 0.5 and the axial periodicity length (height-to-gap aspect
ratio), Γ, is set to − =λ r r/( ) 1.6o i , respectively. A homogeneous mag-
netic field = +H HH e ex x z z with an in axial component Hz and trans-
versal component Hx is considered. [With Hz and Hx being the field
strengths.] The length and time scales of the system are set by the gap

width = −d R Ro i and the diffusion time d ν/2 , respectively. The pres-
sure in the fluid is normalized by ρν d/2 2, and the magnetic field H and
the magnetization M can be conveniently normalized by the quantity

ρ μ ν d/ /0 , where μ0 is the permeability of free space. These con-
siderations lead to the following set of non-dimensionalized hydro-
dynamical equations [11,5]:

∂ + ∇ − ∇ + ∇ = ∇ ∇ × ×pu u u M H + M H( · ) ( · ) 1
2

( ),t
2

(1)

∇ =u· 0.

On the cylindrical surfaces, the velocity fields are given by
=r θ z Reu( , , ) (0, , 0)i i and =r θ z Reu( , , ) (0, , 0)o o , where the inner and

outer Reynolds numbers are =Re ω r d ν/i i i and =Re ω r d ν/o o o , respec-
tively, where = −r R R R/( )i i o i and = −r R R R/( )o o o i are the non-di-
mensionalized inner and outer cylinder radii, respectively.

2.1. Ferrohydrodynamical equation

Eq. (1) is to be solved together with an equation that describes the
magnetization of the ferrofluid. Using the equilibrium magnetization of
an unperturbed state in which the homogeneously magnetized ferro-
fluid is at rest and the mean magnetic moment is orientated in the di-
rection of the magnetic field, we have = χM Heq . The magnetic sus-
ceptibility χ of the ferrofluid can be approximated by the Langevin’s
formula [13], where we set the initial value of χ to be 0.9 and use a
linear magnetization law. The ferrofluid studied corresponds to
APG933 [14]. We consider the near equilibrium approximations of
Niklas [15,16] with a small value of −M Meq and small magnetic
relaxation time τ : ∇ × ≪τu 1. Using these approximations, one can
obtain [11] the following magnetization equation:

�− = ⎛
⎝

∇ × × + ⎞
⎠

c λM M u H H1
2

,N
eq 2

2 (2)

where

= +c τ χ τμ H μ/(1/ /6 Φ)N
2

0
2 (3)

is the Niklas coefficient [15], μ is the dynamic viscosity, Φ is the vo-
lume fraction of the magnetic material, � is the symmetric component
of the velocity gradient tensor [5,11], and λ2 is the material-dependent
transport coefficient [17,5,10,32]. Using Eq. (2), we eliminate the mag-
netization from Eq. (1) to arrive at the following ferrohydrodynamical
equations [5,11]:
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where = ∇ × × pF u H( /2) , M is the dynamic pressure incorporating all
magnetic terms that can be expressed as gradients, and sN is the Niklas
parameter [Eq. (7)]. To the leading order, the internal magnetic field in
the ferrofluid can be approximated by the externally imposed field
[18], which is reasonable for obtaining the dynamical solutions of the
magnetically driven fluid motion. Eq. (4) can then be simplified as
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This way, the effect of the magnetic field and the magnetic properties of
the ferrofluid on the velocity field can be characterized by a single
parameter, the magnetic field or the Niklas parameter [15]:

= +s s s ,N x z
2 2 2 (6)

Fig. 1. Schematic of the Taylor-Couette system. Schematic of the Taylor-
Couette system (TCS) with an external applied homogeneous magnetic field

= +H HH e eext x x z z . Note, that the domain is periodic in z .

S. Altmeyer Journal of Magnetism and Magnetic Materials 482 (2019) 239–250

240



with
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(7)

In this paper we present results in absence (none) of any applied
magnetic field, =s s( , ) (0.0, 0.0)x z , denoted N, and three different field
configurations. A pure transverse magnetic field, =s s( , ) (0.6, 0.0)x z ,
denoted T, for a pure axial magnetic field, =s s( , ) (0.0, 0.6)x z , denoted
A, and an oblique magnetic field, =s s( , ) (0.6, 0.6)x z , denoted O. These
values/parameters correspond to moderate magnetic fields used in
several experiments [19,3].

2.2. Numerical methods

The ferrohydrodynamical equations of motion Eq. (4) can be solved
[17,18,11] by combining a standard, second-order finite-difference
scheme in r z( , ) with a Fourier spectral decomposition in θ and (ex-
plicit) time splitting. The variables can be expressed as
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where f denotes one of the variables u v w p{ , , , }. For the parameter
regimes considered, the choice =m 16max provides adequate accuracy.
We use a uniform grid with spacing = =δr δz 0.02 and time steps

<δt 1/3800. For diagnostic purposes, we also evaluate the complex
mode amplitudes f r t( , )m n, obtained from a Fourier decomposition in
the axial direction:
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where =k πd λ2 / is the axial wavenumber.
Note that for a ferrofluids in presence of a transverse magnetic field

( ≠s 0x ), the symmetries present in classical TCS (arbitrary rotations
about the axis and the reflections about axial mid-height) are broken

and the flow is inherently three-dimensional for any combination of non-
zero values of the parameters Re Re,i o and sx [17,3,18,11,32].

3. Results

It has been shown either numerical [20,21,17,11,32] and experi-
mental [22,3,10] that any magnetic field stabilizes the basic state. It
shift the primary (supercritical) bifurcation solutions to larger values of
control parameters, with the magnitude of the shift significant to de-
pend on the latter. Moreover, regarding elongational flow effects –
expressed by the transport coefficient λ2, our earlier studies [12,11]
have shown, that depending on the system parameter, the effect can be
either stabilizing or destabilizing (by increase of λ2) but does not change
the general stabilizing effect of a magnetic field. Note that the present
study do not focus on such ‘shift’ effects on primary onsets; however
they will be mentioned if observed but not further studied in detail. To
avoid such effects we consider relative values when convenient.

In the following we will focus on two main system configurations:
(1) Pure inner cylinder rotation, with outer cylinder kept at rest
( =Re 0o ); (2) Counter-rotating cylinders ( = −Re 100o .

3.1. Inner cylinder at rest

3.1.1. Torque
Consider the outer cylinder at rest, Fig. 2 presents the influence of

the transport coefficient λ2 with variation of Rei onto the torque G for
the three different considered field orientations, (a) transversal (T), (b)
axial (A), and (c) oblique (O). In calculating the torque =G νJω we used
the fact that for a flow between infinite cylinders the transverse current
of the azimuthal motion,

= − ∂J r uω ν ω[ ]ω
A t r A t

3
, , (with ∫… ≡A

rdθdz
πrl2 ), is a conserved

quantity [23]. Thus the dimensionless torque is the same at the inner
and the outer cylinders. The top row in Fig. 2 presents absolute values
(for comparison we included the (thick dashed blue) curve in absence of
any magnetic field (N)), while bottom row illustrates the differences,

= − =G G GΔ λ λ λ 02 2 2 , induced due to different values λ2 with respect to

Fig. 2. Variation in dimensionless torque. Variation with Rei in dimensionless torque =G νJ ω for (a) transversal (T), (b) axial (A) and (c) oblique (O) magnetic field.
Top panels: absolute torque values G; Bottom panels relative differences = − =G G GΔ λ λ λ2 2 2 0. Further parameters: =Re 0o . The insets (in top panels) show a close up
near the onset of (w) TVF.
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the corresponding magnetic field without any considered elongational
flow ( =λ 02 ). The insets show a close up near the onset of (w) TVF and
illustrate the shift in bifurcation thresholds, which can be either sta-
bilizing or destabilizing, depending on the combination of magnetic
field and λ2 [12,11]. In general the torque G increases monotonous with
Rei (Fig. 2top panels)) and curves considering finite values λ2 are lying
above the one without any considered elongational flow ( =λ 02 ). Note,
the terminus elongational flow incorporates either agglomeration and
chain formation. Further the differences GΔ λ2 (Fig. 2bottom panels))
continuously enlarge with increasing value λ2. That is because at larger
Rei, higher agglomeration of particles and/or larger chains hinder the
‘free’ or ‘smooth’ motion of the fluid and thus increase it’s torque.
Consequently this effect increases with larger values Rei and in parti-
cular for large considered value =λ 2.02 . There is an obvious large in-
fluence, consider such strong elongational flow, as the corresponding
curves (Fig. 2bottom panels)) show a significant change in slope - they
become steeper. The (exact) value for change in slope depends on the
field configuration and goes from ≈Re 500i in transversal (T) over

≈Re 400i in axial (A) to ≈Re 350i in oblique (O). Physically the steeper
curves in torque G with increasing λ2 results from the fact that the flow
becomes more inert having larger particle chains and or aggregation
inside (i.e. identified by larger λ2) which result in larger torque response

for otherwise fixed parameters.

3.1.2. Angular momentum transport
To attempt to characterize the agglomeration phenomenon, i.e. the

influence and modifications, due to finite values λ2, onto the flow
structures we further examine the behavior of the angular momentum
L r( ). Fig. 3 show the mean (axially and azimuthally averaged) angular
momentum =L r r v r Re( ) ( ) /θ z i, , as a function of the radius r for three
different values =Re 110, 300, 600i (see also Fig. 2).

In general, the profiles indicate typical behavior in that positive
angular momentum decreases outward from the inner cylinder. While
this process is relatively small for =Re 110i (top row) it becomes more
pronounced for =Re 300i and even stronger for 600, resulting in a re-
gion of nearly constant angular momentum in the center of the annulus.
This horizontal plateau in the middle of the gap is most pronounced for
larger value =Re 600i , and tends to be slightly closer the inner cylinder
than the outer cylinder. In general the angular momentum curves
follow a monotonically varying trend with increase in λ2. For large
values λ2 the curves show the largest modifications, in particular for
oblique (Fig. 3(c)) magnetic fields (O). In detail, for small Reynolds
number =Re 110i , an increase in λ2 results in changing and formation of
the horizontal plateau in the center. At moderate values Rei this

Fig. 3. Variation in angular momentum.Variation of angular momentum =L r r v r Re( ) ( ) /θ z i, versus the radius r for (w) TVF at =Re 0o for (a) transversal (T), (b)
axial (A) and (c) oblique (O) magnetic field. (N) notes the situation in absence of any applied magnetic field. Top row: =Re 110i ; middle row =Re 300i ; Bottom row

=Re 600i . The insets in (c) illustrate the (scaled) differences in azimuthal mean velocities = −= =v v r v r ReΔ ( ( ) ( ) )/λ θ z λ θ z i2 2.0 , 2 0.0 , , in oblique fields for large value
=λ 2.02 and absence of it (see also Fig. 8).
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horizontal plateau is already fully formed and increasing λ2 moves the
level of the plateau to lower values L; this effect is similar for all field
configuration, while it is largest for oblique fields. At larger values Rei
the plateau is more pronounced (it is wider expanded in radial direction
r) in general. Also here an increase in λ2 changes the level. For small and
moderate λ2 it also moves towards smaller values L, before at larger
values λ2 it moves into opposite direction, it moves to larger values L.
Moreover for large λ2 the plateau changes it’s shape as it develops a
more ‘bow-like’ shape characteristics with a peak in the center region.
In particular in axial field configuration this peak is well visible (bottom
panel in Fig. 3(c)). Further observation for any field configuration is,
that with increasing λ2 the curves become steeper at the inner and outer
cylinder.

The insets in Fig. 3(c), illustrate the (scaled) differences in

azimuthal mean velocities = −= =v v r v r ReΔ ( ( ) ( ) )/λ θ z λ θ z i2.0 , 0.0 ,2 2 (for
oblique fields), for strong considered elongational flow, i.e. for large
value =λ 2.02 and absence of it ( =λ 0.02 ). In general vΔ is negative
close to the inner and positive close to the outer cylinder, respectively.
An explanation is that the agglomerated particles and/or longer chains
are transported towards the (stationary) outer cylinder. Due to their
size they slow down and decrease the averaged in this outer bulk re-
gion. Increasing Rei the region with <vΔ 0 is moving towards the inner
cylinder.

Summarizing one can say, that the elongational flow effect and the
here form resulting flow structural modifications becomes more pro-
nounced the larger the inner cylinder rotation, Rei.

3.1.3. Energy contents
A typical global measure to characterize the flow is the modal ki-

netic energy defined as

∫ ∫ ∫∑= =
−

∗E E r r z θu u1
2

d d d ,kin
m

m
π

r

r
m m0

2

Γ/2

Γ/2

i

o

(10)

where um ( ∗um) is the m-th (complex conjugate) Fourier mode of the
velocity field, Ekin is constant (non-constant) for a steady (unsteady)
solution. Note that for diagnostic purpose we will consider the time-
averaged energy ∫=E E dtkin

T
kin0 , averaged of a period of the respective

flow solution. Another quantity, which is also used as typical indication
of flow characteristics, often used for turbulent analysis, is given by the
cross-flow energy [24],

∫ ∫ ∫ ⎜ ⎟= ⎛
⎝

+ ⎞
⎠−

E u w r r z θ1
2

d d d .cf
π

r

r
m m0

2

Γ/2

Γ/2 2 2
i

o

(11)

The cross-flow energy Ecf measures the instantaneous energy associated
with the radial and axial velocity components.

Avoiding to have to deal with the different stability ‘shifts’ [17,12],
we will consider the relative value, the relation of both energy contents,
E E/cf kin, in order to compare the influence of the elongational flow ef-
fects. Note (as for Ekin), for a diagnostic purpose, we may consider the
time-averaged (over one period) quantities.

Fig. 4 shows the variation of the relative energy amount E E/cf kin
with λ2. At small =Re 110i the ratio monotonically decreases with in-
creasing λ2 for either pure transversal or axial magnetic field. Similar
scenario is found for =Re 300i and transversal field. Interestingly the
behavior is just opposite, it is monotonously increasing, for an oblique
magnetic field at small and moderate values =Re 110i and =Re 300i .
However, it starts at a much smaller value. It is worth to mention that
for any investigated Rei, the absolute values Ecf and Ekin are mainly
monotonously increasing with λ2 (only exception is the axial field at

=Re 300i ). The different shape of the curves is based on the fact, that in
the different field configurations, Ecf and Ekin increase different ‘fast’
with respect to λ2. Pure transversal and pure axial field show qualitative
the same tendency, while oblique fields behave different. For the latter,
the relative value E E/cf kin always increases with λ2, independent of the
field configuration. At =Re 600i , the ratio E E/cf kin increases for any
field configuration, which is most pronounced for oblique field con-
figuration.

3.2. Counter-rotating cylinders

After the situation with inner cylinder at rest, we come now to the
situation with both cylinders in motion, in particular in counter-ro-
tating configuration.

3.2.1. Torque
Fig. 5 shows the torque G and differences GΔ with variation Rei and

counter-rotating outer cylinder = −Re 100o . Compared to the situation
with outer cylinder at rest (Fig. 2), the curves show more variation. In
particular the behavior of GΔ is different. The insets illustrate again a

Fig. 4. Variation in relative energy amount/content. Variation of the relative
energy amount/content (cross-flow and kinetic) E E/cf kin with λ2 in T, A and O
field configuration, for =Re 0o and (a) =Re 110i , (b) =Re 300i and (c)

=Re 600i , respectively.
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shift in the onsets of primary bifurcations with respect to different va-
lues λ2. However more interesting is the fact, that the curves for dif-
ferent values λ2 intersect. They are not continuously increasing with λ2

anymore. As a result the differences GΔ is not monotonous and has
either positive and negative values. For axial (A) and transversal (T)
field configuration (Fig. 5(a, b)) the behavior is very similar. Here an
initial increase of GΔ with Rei (either absolute in positive or negative
region) is followed by a decrease in GΔ to (stronger) negative values at
smaller Rei. This behavior is stronger and more pronounced for larger
values λ2. Here after at larger Rei there is a significant increase in GΔ , in
particular for =λ 2.02 . Consider the oblique field configuration
(Fig. 5(c)), the behavior remains the same for small values λ2. However,
at larger values λ2 there is no decrease and no negative values in GΔ are
observable at moderate Rei, anymore. Interestingly for any considered
λ2, the differences GΔ decreases at large Rei.

This finding of an initial maximum peak in GΔ with increasing Rei is
similar to the observations by Storozhenko et al. [9]. They studied
different diluted ferrofluid concentrations under the influence of an
oscillatory magnetic field. Large concentration of aggregates in the
ferrofluids resulted in a local maximum (peak) in the torque with re-
spect to the oscillatory field frequency. Also we do not have an oscil-
latory field, but increasing Rei changes the contribution of aggregates to
the rotational effect in a similar way. Thus for small λ2 the effect is very
weak, the local maximum is small, which significant increases for larger
values λ2. Due to counter-rotating cylinders the shear in the bulk in-
creases and the effect of agglomeration becomes more important. Thus
the torque initially increases with Rei until a critical value, at which a
(typical minor) rearrangement of the flow within the bulk happen, and
hereafter increases slower. This rearrangement are either move of
vortex center are in extreme cases (only seen for oblique field the
elimination of one toroidally vortex pair).

3.2.2. Angular momentum transport
As we now consider counter-rotating cylinders, the profiles indicate

typical behavior in that positive angular momentum decreases outward
from the inner cylinder and opposite, negative angular momentum
decreases inward from the outer cylinder. This process becomes

stronger with increasing Rei, resulting in a flat region of nearly constant
and close to zero angular momentum in between.

Fig. 6 illustrates the angular momentum in counter-rotating situa-
tion at different Rei. Overall it shows more variation, in particular for
oblique field, than seen before in absence of outer cylinder rotation
(Fig. 3). In general one can say, larger values λ2, result in stronger
modification of the profiles. For small Rei the S-shape of the curves
increases together with λ2, while for moderate Rei the central plateau
region is mainly shifted towards lower values L with increasing λ2. At
large Rei the changes are more versatile and not unidirectional. How-
ever, all over for =λ 2.02 one sees the largest/strongest modifications,
and even the development of local extrema - a local minima to be
concrete, within the plateau region (cf. Fig. 6(b) at =Re 300i and (c) at

=Re 600i ). In particular this local minimum, also moves towards the
inner cylinder with larger value λ2. As a result the main central plateau
region becomes smaller. This effect is also visible in the insets showing
the differences in azimuthal mean velocities vΔ . As for outer cylinder at
rest, vΔ is negative close to the inner cylinder. While for small and large
Re v, Δi also shows the same behavior as for outer cylinder at rest, the
shape is different, mainly at medium Rei, here vΔ is also negative near
the outer cylinder.

One explanation is that the agglomerated particles and/or longer
chains are transported towards the (stationary) outer cylinder. Due to
their size they slow down and decrease the averaged velocity in this
outer bulk region. Increasing Rei the region with <vΔ 0 is moving to-
wards the inner cylinder.

The variation of the relative energy amount E E/cf kin with λ2 for
considered counter-rotating cylinders is presented in Fig. 7. Here also
all absolute values are monotonously increasing with λ2. At low Rei one
can see the same characteristics as for outer cylinder at rest. For
transversal and axial field configuration the values E E/cf kin mainly de-
crease while for oblique field they increase. However this change at
moderate =Re 300i , for which all curves increase with λ2 independent
of the field configuration. As before in general the values Ecf and Ekin
are monotonously increasing with λ2. It is only the rate/relation be-
tween both, which one increases faster, that result in moving up or
down with λ2. The reason for the different behavior of E E/cf kin for

Fig. 5. Variation in dimensionless torque. As Fig. 2 but for counter-rotating cylinders with = −Re 100o . Note the different scaling on the ordinate GΔ λ2.
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oblique field can be understood in the mode interaction for such a field
with the additional stimulation of = ±m 1 modes [17,32]. These modes
appear in the term with the transport coefficient λ2 entering the ferro-
hydrodynamic Eq. (5). However their relative contribution becomes
smaller with increasing Reynolds numbers Rei o, . Physically speaking
this means the stronger the driving forces of the flow are, the less re-
levant are microscopic variations (at least as long they are relatively
small).

For counter-rotating cylinders another possible quantity to study the
influence of elongation/agglomeration, the influence of transport
coefficient λ2, is the azimuthal and axial averaged velocity v r( ) θ z, . In
particular we will focus on it’s zero crossing with respect to the radial
position in order to see the modifications due to λ2.

Fig. 8 shows the variation with λ2 of the radial position at which the
axial and azimuthal averaged velocity =v r( ) 0θ z, vanishes. First of all
it is obvious that in general with increasing Rei, as expected, the zero-
crossing moves outward towards the outer cylinder (compare ordinates
in Fig. 8). Starting with small value =Re 140i (Fig. 8(a)), on see that for
pure transversal and axial fields the radial position remains almost
unchanged until a value of λ2 at about 1.4. For larger values λ2 the zero
crossing moves in opposite directions, outwards for axial and inward for
transversal field. In both cases the behavior is monotonous with in-
crease in λ2. However, for oblique magnetic field the latter does not
hold anymore, the variation is way more complex/versatile. Here the
position changes first outwards before it changes inwards with

increasing λ2. At larger value =Re 300i (Fig. 8(b)) the change under
axial and transversal field are in the same direction; the zero-crossing
point moves monotonously towards the inner cylinder, whereby the
radial coordinate is always smaller for transversal field. Although for
oblique field one sees again a complexer, non-monotonic change with
variation in λ2, the general tendency follows the both other field con-
figurations (at least for values λ2 larger than 0.8); it is mainly inward
directed. A slightly outward move at small λ2 is followed by an inward
move of the radial coordinate of the zero crossing line; in particular at
large λ2 the inward move becomes significant.

Finally, at larger =Re 600i (Fig. 8(c)) the radial position only
changes minor with respect to λ2, independent of the field configura-
tion. While for transversal and axial magnetic field the curve shows a
wave-like motion with small variations, for oblique field an almost
monotonous move outward is observed.

3.3. Dominant modes

Depending on the different system parameters, in particular
Re Re s, ,i o x and sz the detected flow structures have different dominant
modes. However, for all here investigated flow states the axisymmetric
mode =m 0 is always predominant! On top of these we find the
dominant modes to be either =m 2 (field induced for ≠s 0x ), =m 1
and/or combination of both. Which one are exactly present depend on
all former mentioned parameters. Table 1 gives an overview of the

Fig. 6. Variation in angular momentum. As Fig. 3 but for counter-rotating cylinders with = −Re 100o and (a) =Re 140i , (b) =Re 300i and (c) =Re 600i , respectively.
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dominant modes regarding the considered parameters.
The radial position of vortex center in the bulk (Fig. 9), depends on

the strength of considered elongational flow, i.e. transport coefficient λ2

(see also Figs. 10 and 11). For T field configuration the result is an
outward move of the centers with increasing value λ2, either for outer
cylinder at rest or counter-rotating cylinders. The same applies initially
for O field configuration for values ≲λ 1.12 before for larger values λ2

the effect is reversed.
Physically an increasing value λ2, means larger effect of agglom-

eration, aggregation and larger chain lengths (just opposite of having
more diluted ferrofluid): thus the movement of the flow becomes more
inert due to larger required moments. As other parameters are fixed
(e.g. Rei o, ) the vortex center move outwards for compensation. This
effect is quantitative much stronger for oblique field. Note that for flows
in O field the situation is general complexer, as the vortex centers of the

counter-rotating vortex pair becomes more and more out of their
alignment (speaking in r) and become intertwined (see two curves in
Fig. 9 for O field configuration). This makes an accurate determination
of the center position rather difficult. However, the different behavior
for oblique field with the vortex center moving inwards again for larger
λ2 can be understand due to the different dominant mode amplitude

=m 1, which is a direct result of the non-linear interaction of axial and
transverse field (stimulating additional non-symmetric = ±m 1 modes
[17,32]). These additional stimulated helical modes results in
strengthening the azimuthal θ( ) flow components, in particular in the
outer region. Thus having larger transport coefficient λ2 means stronger
agglomeration, aggregation and larger ferrofluid chains. Thus regions
can be seen as slug flow and thus ’push’ the vortex center inwards again.

Fig. 7. Variation in relative energy amount. As Fig. 4 but for = −Re 100o and (a)
=Re 140i , (b) =Re 300i and (c) =Re 600i , respectively. Note the different

scaling on the ordinate E E/ kin0 .

Fig. 8. Variation of the radial position of azimuthal zero flow. Variation with λ2

of the radial position of = =r r v r( ( ) 0)θ z0 , for = −Re 100o and (a) =Re 140i ,
(b) =Re 300i and (c) =Re 600i , respectively. Note that the scale for radial po-
sition is non-dimensionalized with inner cylinder at =r 1i and outer one at

=r 2o , respectively. The dashed line represents the corresponding zero-crossing
position in absence of any magnetic field.
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Such behavior is also confirm with the observation of strong negative
azimuthal mean velocities vΔ as presented in the insets in Figs. 3 and 6.
This behavior applies similar for outer cylinder at rest and counter-
rotating cylinders. Moreover in the case of counter-rotating cylinders
either for transverse and oblique field (Fig. 9(b)) one sees a stagnation

at a specific radial position.

3.4. Flow structures

3.4.1. Transversal and oblique field
Fig. 10 elucidates selected flow structures for outer cylinder at rest
=Re 0o in either transversal (a,c) and oblique (b,d) field configuration

with and without considered transport coefficient λ2 as indicated at
=Re 110i and =Re 300i . Although the flow structures in transversal

field T at =Re 110i and =Re 300i (Fig. 10(a, c)) are both =m 2 wavy
vortices (2-wTVF), they are crucially different. The one at lower

=Re 110i is a non-rotating, transversal field induced wavy vortex flow
state [17]. In absence of the symmetry breaking transversal field only
pure TVF exists. The onset for classical (azimuthal rotating) 2-wTVF is
at Rei about 118. In contrast these 2-wTVF at =Re 300i also exist aside/
without of any applied magnetic field, only becomes further modified
due to presence of such magnetic field. In particular the classical 2-
wTVF is an azimuthal rotating flow state. For the complexer oblique
field configuration (Fig. 10(b, d)) on the other hand we observed 1-
wTVF, for which the =m 2 mode influence due to the symmetry
breaking transversal field is clearly visible in all flow structures (see in
particular plots of azimuthal vorticity =η r θ z( , 0, ) and the radial ve-
locity =u r θ z( 0.5, , ) on an unrolled cylindrical surface in the annulus
at mid-gap). Contrary for T field configuration, under O field all 1-
wTVF structures are rotating. Note the onset of 1-wTVF in absence of
any field is at Rei about 108. Regarding T field configuration (Fig. 10(a,
c)) the vector plot u r z w r z[ ( , ), ( , )] of the radial and axial velocity
components illustrate the former presented radial ‘outward’ shift of the
center position of the vortices (see Fig. 9)). Moreover, with increasing λ2

we found for rotating wavy vortex flow (1-wTVF and 2-wTVF) the both
centers of the counter-rotating vortex pair to become more separated in
it’s radial position; as a result the flow structures become more inter-
twined.

Consider counter-rotating cylinders = −Re 100o (Fig. 11) the flow
structures become more pronounced in general, but keep the same main
characteristics as discussed for outer cylinder at rest (Fig. 10). Flow
structures in T field configuration (Fig. 11(a, c)) remain mode-2
dominated (2-wTVF) and those in O field configuration (Fig. 11(b, d))
remain mainly (see below) mode-1 dominated (1-wTVF). The addi-
tional rotation of the outer cylinder results in more intertwined flow
dynamics within the bulk. While for T field and =Re 140i the 2-wTVF
are non-rotating structures, they do rotate for =Re 300i . Interestingly the
2-wTVF for O at =Re 140i and strong considered elongational flow

=λ 2.02 changes to be mode-2 dominant. Moreover it is not a 2-wTVF
anymore, it shows various features and characteristics typical for mode-
2 Mixed-Cross-Spiral solution (MCS) [25], as interaction of helical
spiral flow states. In fact the amplitudes of modes =m 2 and = −m 2
are almost identical, it is even close to a 2-Mixed-Ribbon solution.

Regarding Figs. 10 and 11 it is quite obvious that the flow structures
become more complex/difficult with increasing λ2. This is best visible in
either the 3D isosurface plots of rv, which become more scattered and
complexer on the its surface. Here it is worth to mention, that the
azimuthal vorticity of the flow structures also increases (here not
shown) almost linear with λ2, which we deeply studied in a previous
work [11]. Similar the radial velocity =u r θ z( 0.5, , ) on an unrolled
cylindrical surface in the annulus show significant stronger variation in
its contours and velocity strength.

3.4.2. Axial field
A pure axial field only shift the onsets of instabilities, it’s bifurcation

thresholds to larger values (it stabilizes the basic state) and does not
modify the flow structures [17,22]. This also hold for further con-
sidered elongational flow! Thus, the study of only this field configura-
tion is somehow relative boring. However, we do not want miss to
present at least one flow structure in pure axial magnetic field config-
uration. In particular we did an interesting observation. Fig. 12

Table 1
Investigated parameter sets. Parameter sets, Re Re,i o, field configuration
T A O{ , , } and dominant modes m within the appearing flow structures at

⩽ ⩽λ0 2.01 .

Rei Reo field m

T 2
110 0 A 0

O 1
T 2

300 0 A 0, 1
O 1
T 1

600 0 A 1
O 1

T 2
140 −100 A 0

O 1
T 2

300 −100 A 2
O 1
T 1

600 −100 A 1
O 1

Fig. 9. Variation of the radial position of vortex center. Variation with λ2 of the
radial position of rc for (a) =Re 110i , =Re 0o and (b) =Re 140i , = −Re 100o ,
respectively. Note that the scale for radial position is non-dimensionalized with
inner cylinder at =r 1i and outer one at =r 2o , respectively. The horizontal
dashed line represents the corresponding zero-crossing position in absence of
any magnetic field.
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illustrate the flow structure in an axial magnetic field A at =Re 600i and
=Re 0o with =λ 0.22 . Obvious this is an =m 1 mode flow, a ‘classical’

1-wTVF with azimuthal rotation, which is the most common/re-
presentative one for all detected flows under axial field geometry (see
also Table 1). Interestingly the shown 1-wTVF (Fig. 12) has aside it
dominant =m 1 mode a quite strong contribution of the = −m 1 mode
as visible in either isosurface plot rv and radial velocity =u r θ z( 0.5, , )
on an unrolled cylindrical surface. This is similar to the previous
mentioned finding of and Mixed-Cross-Spiral-like structure
(Fig. 11(b4)). However, here with interaction of =m 1 and = −m 1
helical modes, which means it is an (close to) 1-MCS solution [25]. To
our knowledge such a flow has not been reported yet without artificial
symmetry restrictions.

4. Discussion and conclusion

While the flow in non structured ferrofluids can be described by the
influence of the field on the relaxation of the magnetization of the fluid
[7,22] flow effects in fluids with interaction (as here considered elon-
gational flow, which describes the effect of agglomeration, aggregation
and chain formation) will require a more complex theoretical descrip-
tion.

As a foundational paradigm of fluid dynamics, the Taylor-Couette
system (TCS) has been extensively investigated computationally and
experimentally. In spite of the long history of the TCS and the vast
literature on the subject, the dynamics of TCS with a complex fluid
subject have begun to be investigated relatively recently. In fact, al-
though the nonlinear dynamics in counter-rotating TCS has been ex-
tensively studied the knowledge of the non-linear dynamics in this

regime for complexer fluids, in particular ferrofluids is very rare. The
present work is aimed to fill this gap.

In particular, we explored the effect of elongational flow on ferro-
fluid in the presence of transverse, axial and oblique magnetic field, we
consider the so-called transport coefficient λ2 on the TCS with either
outer cylinder at rest or cylinders in counter-rotating scenario. Note
that in this study we do not focus on the well-known stabilization effect
for any magnetic field, as the onset of centrifugal instability is relatively
shifted in the bifurcation curve [3,18,17,26].

In general one can say that in many ways elongational flow en-
hances the effect of magnetic fields, independent it’s configuration
(transversal (T), axial (A) and oblique (O)).

Investigating the dimensionless torque G we observed modification
due to λ2, which are stronger for larger values λ2. While for outer cy-
linder at rest =Re 0o these modifications grow monotonically with in-
creasing Rei, the counter-rotating situation is more complex. Regarding
the difference GΔ with respect to neglected elongational flow ( =λ 02 ),
an initial small increase is followed by a decrease, before again sig-
nificant increase, with enlarging Rei. This holds for all considered field
geometries (A,T,O) and is the largest for larger λ2. This largest effect can
be understand as with increasing λ2 the flow becomes more inert having
larger particle chains and or aggregation inside (i.e. identified by larger
λ2) otherwise fixed parameters.

Such observations are confirm with the studies by Storozhenko et al.
[9] who investigated different concentrations of ferromagnetic particles
under a rotating magnetic field. They detected a field driven agglom-
eration of particles in case of stationary field at different orientation,
which becomes destroyed for faster rotations. In their case the destroy
of agglomeration can be seen in a decreasing torque with increasing

Fig. 10. Flow visualizations for =Re 00 . Variation of flow structures with λ2 in (a, c) transversal field and (b, d) axial field, respectively. Control parameters are (a, b)
=Re 110i , (c, d) =Re 300i and (1) =λ 0.02 , (2) =λ 0.22 , (3) =λ 0.82 and (4) =λ 2.02 . Each sub-panel shows (starting top left and going clockwise) isosurfaces of rv

[red (dark gray) and yellow (light gray) colors correspond to positive and negative values, respectively, with zero specified as white], vector plot u r z w r z[ ( , ), ( , )] of
the radial and axial velocity components (including the azimuthal vorticity =η r θ( , 0) and the radial velocity u θ z( , ) on an unrolled cylindrical surface in the annulus
at mid-gap [red (yellow) color indicates in (out) flow]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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rotation frequency of the field.
Moreover, physically, particle–particle interaction, agglomeration

and the chain formation result in modifications of the spatio-temporal
structure of the flow. For counter-rotating cylinders the radial position
at which the axial and azimuthal averaged velocity vanishes,

=v r( ) 0θ z, , depends on the amplitude of the transport coefficient λ2
and thus on the agglomeration on particles. Far any field configuration,
from small to moderate Rei it is mainly shifted towards the inner cy-
linder, while at larger Rei it remains almost constant and slightly move
outwards for large values λ2.

Studying the relative energy amount E E/kin cf , the ratio between
cross-flow Ecf and kinetic energy Ekin, we detected mainly different
behavior for pure axial or transversal and oblique magnetic fields. With
increasing of λ2 this ratio typically decreases for pure field configuration
(axial and transversal) and increases in oblique field configuration,
respectively. The fact that the ratio becomes largest in oblique field and
large λ2 (as already observed before) can be traced down to the addi-
tional mode stimulation = ±m 1 in such a field [17,32], which also
enter in the terms describing elongational flow. However their relative
contribution has more weight at low and moderate Reynolds numbers.

Physically speaking this means the stronger the driving forces of the
flow are, the less relevant are internal microscopic variations (at least as
long they are relatively small). All over this suggests that particle–-
particle interaction and the chain formed by the flow of the fluid are
more significantly influenced due to the increasing magnetic-field
strength and in particular applied field direction [17,12].

Consider constant magnetic field and variation either inner cylinder
rotation, Rei, and/or transport coefficient, λ2, describing elongational
flow, our studies qualitative prove/confirm the field driven agglom-
eration, first experimental detected by Storozhenko et al. [9].

Consider finite transport coefficient λ2 we find the torque not to
have a ‘simple’ relation/proportion with increasing the inner cylinder
rotation, i.e. Rei. One indication is the slope of the torque versus Rei. If
the ferrofluid particles would contribute independently to the torque,
this slope should increase more or less linearly. In fact, the variation in
torque GΔ λ2 shows an unexpected behavior in the torque. To be con-
crete, with consider larger values λ2 we detected the torque with in-
creasing Rei initially to increase, followed by a decrease and finally
significant increase again. The range of decrease depend on considered
λ2; the larger λ2 the larger the decrease. This holds for A and T field
configuration in general. For O field configuration the same applies at
small values λ2, while for larger no decrease, only a decrease in slope
can be observed. Natural explanation is that at low values Rei the effect
of aggregation, the forming of long chains play a minor role, but be-
comes important, at least noticeable for larger Rei. This fact is most
pronounced the larger the considered value λ2.

Finally we detected variation in either the axial position of vortex
centers and azimuthal zero flow which are forced due to agglomeration
effects. Here crucial is the fact that for oblique field the vortex center
first move outwards before it move inwards again with increasing λ2

while in other field configuration it shows an almost monotonical
outward movement. Physically explanation can be found in the dif-
ferent dominant mode amplitude =m 1 (see Table 1), based non-linear
interaction of axial and transverse field which stimulate additional

Fig. 11. Flow visualizations for = −Re 1000 . As Fig. 10 but for = −Re 100o .

Fig. 12. Flow visualizations for =Re 600i and =Re 0o . As Fig. 10 but for
=Re 600i and =Re 0o .
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(non-symmetric) = ±m 1 modes [17,32]. These additional stimulated
helical modes strengthen the azimuthal θ( ) flow components, in parti-
cular in the outer region. As having larger transport coefficient λ2 means
stronger agglomeration/aggregation and/or larger ferrofluid chains this
regions can be seen as slug flow and thus ‘push’ the vortex center in-
wards again.

This behavior applies similar for outer cylinder at rest and counter-
rotating cylinders. Moreover in the case of counter-rotating cylinders
either for transverse and oblique field (Fig. 9(b)) one sees a stagnation
at a specific radial position.

Key attraction for the use of ferrofluids is obviously their possibility
to have inter-particle interaction due to modification of their micro-
scopic composition or due changing an applied magnetic field. This
makes them a very interesting model substance for the study of the
influence of inter-particle interaction on the rheological behavior of
suspensions and the connection between the microstructure forced by
inter-particle interaction and the macroscopic flow properties.

Given that the Taylor-Couette system provides very good conditions
for well controlled experiments on the behavior of vortices, we hope
that our results generate enough interest to address further experi-
mental and numerical studies focused on agglomeration and chain
formation in ferrofluids considered by elongational effect. In fact the
here considered field strength =s s, 0.6x z equal to =H 41.8 [kA/m] are
easy accessible in experimental setups and the detected radial variation
in the vortex center is so large that it should be also detectable in finite
size systems, probably with minor amplitude due to the always present
Ekman vortices in the bulk.
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