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a b s t r a c t

This study treats with the influence of a symmetry-breaking transversal magnetic field on the nonlinear
dynamics of ferrofluidic Taylor-Couette flow – flow confined between two concentric independently
rotating cylinders. We detected alternating ‘flip’ solutions which are flow states featuring typical charac-
teristics of slow-fast-dynamics in dynamical systems. The flip corresponds to a temporal change in the
axial wavenumber and we find them to appear either as pure 2-fold axisymmetric (due to the
symmetry-breaking nature of the applied transversal magnetic field) or involving non-axisymmetric,
helical modes in its interim solution. The latter ones show features of typical ribbon solutions. In any case
the flip solutions have a preferential first axial wavenumber which corresponds to the more stable state
(slow dynamics) and second axial wavenumber, corresponding to the short appearing more unstable
state (fast dynamics). However, in both cases the flip time grows exponential with increasing the mag-
netic field strength before the flip solutions, living on 2-tori invariant manifolds, cease to exist, with life-
time going to infinity. Further we show that ferrofluidic flow turbulence differ from the classical, ordinary
(usually at high Reynolds number) turbulence. The applied magnetic field hinders the free motion of fer-
rofluid partials and therefore smoothen typical turbulent quantities and features so that speaking of
mildly chaotic dynamics seems to be a more appropriate expression for the observed motion.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

The flow confined between two concentric cylinders rotating
with different velocity – Taylor-Couette flow – has been a para-
digm to investigate fundamental non-linear dynamics, various
hydrodynamic stabilities and pattern formation in fluid flows
[1,2]. Although, classical fluids in this system setup (Taylor-
Couette system, TCS) [4–7,2] have been studied for about hundred
years the dynamics of complex fluids (e.g., ferrofluids [3]) have
attracted attention mainly in recent years/modern era [8–
14,?,16–21]. A representative types of such complex fluids are fer-
rofluids [3], which are manufactured fluids consisting of dispersion
of magnetized nanoparticles in a liquid carrier. A ferrofluid can be
stabilized against agglomeration through the addition of a surfac-
tant monolayer onto the particles. In the absence of any magnetic
field, the nanoparticles are randomly orientated so that the fluid
has zero net magnetization. In this case, the nanoparticles alter lit-
tle the viscosity and the density of the fluid. Thus, in the absence of
any external field a ferrofluid behaves as an ordinary (classical)
fluid. However, when a magnetic field of sufficient strength is
applied, the hydrodynamical properties of the fluid, such as the vis-
cosity, can be changed dramatically [22,23,8,15] and the dynamics
can be vary altered. For instance, the magnetoviscous effect in fer-
rofluids is highly dependent on the orientation of the magnetic
field with respect to the fluid flow [24]. Studies indicated that,
under a symmetry-breaking transverse magnetic field, all flow
states in the TCS become intrinsically three-dimensional
[15,17,19], even increase the already huge number of flow states,
known to exist in the TCS (being steady, time-independent or
unsteady, time-dependent and its multiplicities) [1,2,4–7,2]. More-
over, the Reynolds number for first appearing of turbulence in fer-
rofluidic flows [20] can be significant smaller than in classical
fluids.

The present work study flow states in the ferrofluidic TCS con-
sider axial periodic, counter-rotating cylinders with wide gap at
low Reynolds number in symmetry-breaking transversal magnetic
field configuration. We detected ‘flip’ solutions, in particular two
types, which offer a periodic switch in its axial wavenumber,the
number of vortices in the bulk, respectively. We found this to hap-
pen with either only axisymmetric modes (except the intrinsic 2-
fold symmetry in presence of a finite transverse magnetic field)
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or including non-axisymmetric, helical flow contributions. The flip
solutions live on 2-tori invariant manifolds and cease to exist with
increasing magnetic field strength when the flip period exponen-
tially growth to infinity. Further investigating turbulence for simi-
lar shear flow Reynolds numbers and magnetic field strength we
show turbulence in ferrofluids seems to differ from classical (ordi-
nary high Reynolds number) turbulence. Any applied field re-
orientate the ferrofluid particles, change the density and hinders
their ‘free’ motion. This together with further ferrofluid properties,
as particle–particle interaction or chain formation results in
‘smoothen’ of the flow dynamics. The result is more a middle chao-
tic motion than typical high Reynolds number turbulence.

The paper is subdivided into four parts. Following the introduc-
tion, Section 2 describes the system and our methods of investiga-
tion. There we present the field equations for the magnetization
and the velocity field and we describe implications of the presence
of the magnetic terms in the generalized Navier–Stokes equations.
This is followed by Section 3 presenting our main results. We first
discuss different bifurcation sequences with increasing transversal
magnetic field strength and describe the different appearing flow
states with main focus on the new detected flip solutions. There-
fore we illustrate various quantities, e.g. (axial) wavenumber
dependence, vorticity and the time dependence/evolution of flip
solutions. Moreover we look into turbulent dynamics of ferrofluids
in detail. Finally we summarize the main results with a discussion
in Section 4.
2. System setting and the Navier–Stokes equation

We consider a standard TCS consisting of two concentric, inde-
pendently rotating cylinders (see Fig. 1). Within the gap between
the two cylinders there is an incompressible, isothermal, homoge-
neous, mono-dispersed ferrofluid of kinematic viscosity m and den-
sity q. The inner and outer cylinders have radius R1 and R2, and
they rotate with the angular velocity x1 and x2, respectively.
The boundary conditions at the cylinder surfaces are of the non-
slip type, whereas periodic boundary conditions are considered
in axial direction with fixed height-to-gap aspect ratio C ¼ 2. The
system can be characterized in the cylindrical coordinate system
ðr; h; zÞ by the velocity field u ¼ ðu;v;wÞ and the corresponding
vorticity field r� u ¼ ðn;g; fÞ. The radius ratio of the cylinders is
fixed: R1=R2 ¼ 0:5 and a homogeneous magnetic field is applied
Fig. 1. Schematis TCS. Schematic sketch of the Taylor-Couette system in a
homogeneous magnetic field H ¼ Hxex .
in transverse H ¼ Hxex direction, with Hx being the field strength.
The length and time scales of the system are set by the gap width

d ¼ R2 � R1 and the diffusion time d2
=m, respectively. The pressure

in the fluid is normalized by qm2=d2, and the magnetic field H and
the magnetization M can be conveniently normalized by the quan-
tity

ffiffiffiffiffiffiffiffiffiffiffi
q=l0

p
m=d, where l0 is the permeability of free space. These

considerations lead to the following set of non-dimensionalized
hydrodynamical equations [19,11]:

ð@t þ u � rÞu�r2uþrp ¼ ðM � rÞHþ 1
2
r� ðM�HÞ; ð1Þ

r � u ¼ 0: ð2Þ
The boundary conditions are set as follows. On the cylindrical

surfaces, the velocity fields are given by uðr1; h; zÞ ¼ ð0;Rei;0Þ and
uðr2; h; zÞ ¼ ð0;Reo;0Þ, where the inner and outer Reynolds num-
bers are Rei ¼ x1r1d=m and Reo ¼ x2r2d=m (fixed at�100 in the pre-
sent study), respectively, where r1 ¼ R1=ðR2 � R1Þ and
r2 ¼ R2=ðR2 � R1Þ are the non-dimensionalized inner and outer
cylinder radii, respectively.

2.1. Ferrohydrodynamical equation

Eq. (1) is to be solved together with an equation that describes
the magnetization of the ferrofluid. Using the equilibrium magne-
tization of an unperturbed state in which the homogeneously mag-
netized ferrofluid is at rest and the mean magnetic moment is
orientated in the direction of the magnetic field, we have
Meq ¼ vH. The magnetic susceptibility v of the ferrofluid can be
approximated by the Langevin’s formula [25], where we set the ini-
tial value of v to be 0.9 and use a linear magnetization law. The fer-
rofluid studied corresponds to APG933 [26]. We consider the near
equilibrium approximations of Niklas [8,27] with a small value of
jjM�Meqjj and small magnetic relaxation time s: jr � ujs� 1.
Using these approximations, one can obtain [19] the following
magnetization equation:

M�Meq ¼ c2N
1
2
r� u�Hþ k2SH

� �
; ð3Þ

where

c2N ¼ s= 1=vþ sl0H
2=6lU

� �
ð4Þ

is the Niklas coefficient [8], l is the dynamic viscosity, U is the vol-
ume fraction of the magnetic material, S is the symmetric compo-
nent of the velocity gradient tensor [11,19], and k2 is the
material-dependent transport coefficient [11] that can be conve-
niently chosen to be [15,11,28] k2 ¼ 4=5. Using Eq. (3), we eliminate
the magnetization from Eq. (1) to arrive at the following ferrohydro-
dynamical equations [11,19]:

ð@t þ u � rÞu�r2uþrpM ¼ � s2N
2

Hr � Fþ 4
5
SH

� ��

þH�r� Fþ 4
5
SH

� ��
; ð5Þ

where F ¼ ðr� u=2Þ �H;pM is the dynamic pressure incorporating
all magnetic terms that can be expressed as gradients, and sN is the
Niklas parameter [Eq. (7)]. To the leading order, the internal mag-
netic field in the ferrofluid can be approximated by the externally
imposed field [29], which is reasonable for obtaining the dynamical
solutions of the magnetically driven fluid motion. Eq. (5) can then
be simplified as

ð@t þ u � rÞu�r2uþrpM ¼ s2N r2u� 4
5
r � ðSHÞ½ �

	
�H

� 1
2
r� ðr� u�HÞ �H� ðr2uÞ

�
þ4
5
r� ðSHÞ

�

: ð6Þ
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This way, the effect of the magnetic field and the magnetic
properties of the ferrofluid on the velocity field can be character-
ized by a single parameter, the magnetic field or the Niklas param-
eter [8]

s2x ¼ s2N ¼ 2ð2þ vÞHxcN
ð2þ vÞ2 � v2g2

: ð7Þ

As we only consider transversal field configuration in the pre-
sent study we will use sx (instead of sN) for the magnetic field
strength in order to highlight the transversal orientation.

2.2. Numerical methods

The ferrohydrodynamical equations of motion Eq. (5) can be
solved [15,29,19] by combining a standard, second-order finite-
difference scheme in ðr; zÞ with a Fourier spectral decomposition
in h and (explicit) time splitting. The variables can be expressed as

f ðr; h; z; tÞ ¼
Xmmax

m¼�mmax

f mðr; z; tÞeimh; ð8Þ

where f denotes one of the variables fu; v;w; pg. For the parameter
regimes considered, the choice mmax ¼ 10 provides adequate accu-
racy. We use a uniform grid with spacing dr ¼ dz ¼ 0:02 and time
steps dt < 1=3800. For diagnostic purposes, we also evaluate the
complex mode amplitudes f m;nðr; tÞ obtained from a Fourier decom-
position in the axial direction:

f mðr; z; tÞ ¼
X
n

f m;nðr; tÞeinkz; ð9Þ

where k ¼ 2pd=k is the axial wavenumber.
Note that for a ferrofluid under a transverse magnetic field

(sx – 0), the symmetry present in classical TCS (arbitrary rotations
about the axis) is broken and the flow is inherently three-
dimensional for any non-zero values of the parameters Rei;Reo
and sx [19,17,29,30].

2.3. Nomenclature

We focus on the flow states in a (relative) short periodic domain
with the small aspect-ratio C ¼ 2. A common feature shared by
most flow states is that the axisymmetric Fourier mode associated
with the azimuthal wavenumber m ¼ 0 (see 2.2) is dominant so
that the flow states correspond to toroidally closed solutions. Note
that ferrofluidic flows dominated by an azimuthally modulated
m ¼ 0 mode differ from the classical wavy vortex flow solutions
in the absence of any magnetic field [7,31–34], which are time-
periodic, rotating states that do not propagate axially. In the pres-
ence of a transverse magnetic field, all the flow states are funda-
Table 1
Flow state nomenclature and abbreviations. From left to right; flow state M-statek2

k1
(M iden

modes m; specification & dynamics as s steady (stationary) and u unsteady (time-dependent)
m ¼ 0 is present in all solutions. Note thatm ¼ �2 is intrinsic due to sx – 0. The relations ,
or smaller. The – for k2 indicates non-existence.

Flow state k1 k2

TVFp 2p –
L1-[R1]-SPIp p –
1-wSPIp p –
l1-wSPIp p –
r1-wSPIp p –
2-AVF – –
1-wTVFp2p 2p p
2-wTVFp2p 2p p
1-wTVF2p;s 2p –
1-wTVF2p;u 2p –
mentally three dimensional with a stimulated m ¼ 2 mode,
leading to steady (non-rotating) wavy vortex flows [15,17,19].
Rotating flows with non-axisymmetric, helical Fourier modes (here
finite m ¼ 1 mode) can also arise, so do (wavy) spiral flow states
and unsteady (oscillatory, for sx – 0) wavy flow solutions.

A key indicator differentiating and indicating the ‘flip’ solution
is the axial number of vortex cells present in the annulus, the axial
wavenumber, respectively. To take into account all characteristics

of flow states, we use the notation M-statek2k1 defined in Table 1 to
distinguish the different flow patterns. For instance, the notion
1-wTVFp2p stands for a flip solution, being a wavy vortex flow
switching between the axial wavenumbers [wavelength] k1 ¼ 2p
½k1 ¼ 1� and k2 ¼ 2p ½k2 ¼ 2� with a finite stimulated m ¼ 1 mode
within the process (see also Fig. 5).

3. Results

As a global measure to characterize the flow, we use the modal
kinetic energy defined as

Ekin ¼
X
m

Em ¼ 1
2

Z 2p

0

Z C=2

�C=2

Z ro

ri

umu�
mrdrdzdh; ð10Þ

where um (u�
m) is the m-th (complex conjugate) Fourier mode of the

velocity field, Ekin is constant (non-constant) for a steady (unsteady)
solution. For a diagnostic purpose, we consider the time-averaged

(over one period) quantity, Ekin ¼ R T
0 Ekindt. In addition to the global

measures and the different mode amplitudes jum;nj (cf. Eq. (9)), we
also use the azimuthal vorticity on the inner cylinder at two differ-
ent points, g�½þ� ¼ ðri;0;C=4½C=2�; tÞ, as a local measure to character-
ize the flow states. Finally to study turbulent characteristics we
further consider the cross-flow energy [35],

Ecf ;rðr; tÞ ¼ hu2
r þ u2

z iAðrÞ; ð11Þ

averaged over the surfaces A of a concentric cylinder of radius r.

3.1. Bifurcation sequences and appearing flow states

Bifurcation scenarios with changing the magnetic field strength
sx at three different Rei ¼ 120; 130 and 150 are shown for the
modal kinetic energy Ekin (Eq. (10)) and for the radial velocity
jum;nj [due to the most energetic, dominant (averaged) mode ampli-
tudes ðm;nÞ at mid-gap and mid-height (Eq. (9))] in Fig. 2. Visual-
izations of selected flow states appearing in the different
bifurcation sequences are presented in Fig. 3.

Rei ¼ 120: For sx ¼ 0 (Fig. 2ðaÞ) the only stable solution is the
symmetry degenerated (left-(m ¼ 1) or right-winding (m ¼ �1))
helical m ¼ 1 spiral solution (see also R1-SPIp in Fig. 3ð1Þ) which
tify the dominant contribution); incorporating axial wave numbers k1 ; k2; stimulated
and L,l [R,r] left-[right]-winding; The stimulated modes refer to the dominated ones;
;V;U indicate that the corresponding (stimulated) mode amplitudes are equal, larger

Stim. modes m Spec. & dynamics

0 s
1½�1� u, rot., left-[right-]winding
1 , � 1 , �2 u, rot. left-right equal
1V� 1 , �2 u, rot. left-dominant
1U� 1 , �2 u, rot. right-dominant
0, �2 s
�1 , �2 u, flip
0, �2 u, flip

1 , � 1 , �2 s

1 , � 1 , �2 u, pulsing/oscillating



Fig. 2. Bifurcation with the strength of magnetic field sx . Bifurcation with the strength of magnetic field sx at three different inner cylinder rotation speeds: ðaÞ Rei ¼ 120; ðbÞ
Rei ¼ 130 and ðcÞ Rei ¼ 150. Shown are ð1Þ time-averaged modal kinetic energy Ekin and ð2Þ dominant (averaged) amplitudes jum;nj, of the radial velocity field at mid-gap
contributed from the modes ðm;nÞ as indicated. Solid [dashed] lines with full [empty] symbols represent the unsteady, time-dependent [steady, time-independent] flows.
Different flow structures are labeled (Table 1). See text for further explanations. Vertical arrows indicate the transition when one solution loses its stability.
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disappears for any finite value, sx – 0, due to the symmetry-
breaking nature of the transverse field [15,20] with the favor of
wavy modulated flow 1-wSPIp (Fig. 3ð2Þ). Here shown is the solu-
tion with dominant right-winding mode ð1;�1Þ; the symmetry
degenerated left-winding solution with dominating mode ð1;1Þ
exists simultaneously. Increasing sx, this helical solution loses it’s
stability and the system change to toroidally closed flow struc-
tures. First appears the time dependent 1-wTVFp flow state, here
shown l1-wTVFp with dominant ð1;1Þ and minor ð1;�1Þ mode
contribution (Fig. 3ð3Þ). Note that the symmetry related solution
r1-wTVFp with switch of ð1;1Þ and ð1;�1Þ mode amplitudes exist
simultaneously. [Applying the axial reflection Kz and rotation Rp to
the flow state l1-wTVFp as presented in Fig. 3ð3Þ and using this as
initial state we could follow the identical bifurcation branch for
r1-wTVFp.].

Increasing sx the l1-wTVFp solution loses its time dependence
and equilibrate the left and right winding mode contributions
ð1;1Þ , ð1;�1Þ (Fig. 2ðb2Þ) to the steady solution 1-wTVFp
(Fig. 3ð4Þ). Strictly speaking one could also identify this flow as
a kind of ribbon (RIB) solution, but due to the fact that the
axisymmetric mode, m ¼ 0, i.e. ð0;2Þ remains the dominant one
(in RIB this is not the case) we favor the expression with wTVF.
Note, that it is this 1-wTVFp (1-RIB like) solution which also
appears as unstable solution within the ‘flip’ solution 1-wTVFp2p
(see Fig. 4ð5;6Þ). For even larger sx the flow loses it’s axial depen-
dence as the bifurcation threshold is moved upwards with sx and
the result is a pure annular vortex flow (2-AVF, Fig. 3ð5Þ) with
only field induced 2-fold symmetry. 2-AVF is the basic state in
case of finite, axisymmetry-breaking transversal magnetic field
(sx – 0). Note for Rei ¼ 120 all supercritical flow states have the
same axial wavenumber [wavelength] k ¼ p [k ¼ 2], independent
of the field strength sx. Moreover there is no flip solution present
at these parameter values, as we will see for larger values of Rei.
Continuous increasing sx the flow finally turns turbulent, directly
out of 2-AVF.

Note that the flow we here refer to as 2-AVF is in principle a cir-
cular Couette flow with discrete 2-fold symmetry. As for CCF the
axisymmetric symmetry corresponding to m ¼ 0 is inherently we
prefer to use 2-AVF instead of using any acronym regarding CCF
to avoid any confusion. The fact that for Rei ¼ 120 no flip solution
appears, most likely results from the ‘low’ Rei value and corre-
sponding investigated sx.

Rei ¼ 130: In absence of any magnetic field ðsx ¼ 0Þ one finds
the classical steady stable TVF2p solution (Fig. 2ðbÞ), with two pair



Fig. 3. Visualization of the different flow states. Shown are ðaÞ the radial velocity uðh; zÞ on an unrolled cylindrical surface in the annulus at mid-gap [red (yellow) color
indicates in (out) flow], ðbÞ isosurfaces of rv [red (dark gray) and yellow (light gray) colors correspond to positive and negative values, respectively, with zero specified as
white], ðcÞ vector plot ½uðr; zÞ;wðr; zÞ� of the radial and axial velocity components (including the azimuthal vorticity (left: gðr; h ¼ 0Þ; right: gðr; h ¼ p=2Þ) and ðdÞ the azimuthal
velocity component v in ðr; hÞ plane at mid-height (viewed from the bottom) [red (yellow) color indicates positive (negative) velocity]. ð1Þ R1-SPIp at Rei ¼ 120; sx ¼ 0:0 with
rv = �60, ð2Þ R1-wSPIp at Rei ¼ 120; sx ¼ 0:45 with rv = �60, ð3Þ l1-wTVFp at Rei ¼ 120; sx ¼ 0:5 with rv = �40, ð4Þ 1-wTVFsp at Rei ¼ 120; sx ¼ 0:7 with rv = �12, ð5Þ 2-AVF at
Rei ¼ 120; sx ¼ 1:0 with rv = �10�4, ð6Þ 1-wTVF2p at Rei ¼ 130; sx ¼ 0:0 with rv = �5, ð7Þ 1-wTVF2p at Rei ¼ 130; sx ¼ 1:1 with rv = �15, ð8Þ 1-wTVF2p at Rei ¼ 150; sx ¼ 1:35
with rv = �100. Note that ð4Þ 1-wTVFsp is a flow state which also appears as interim/transient solution during the flip process of 1-wTVFp2p (see Fig. 6ð6Þ). The same legends for
flow visualization are used for all subsequent flow visualizations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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of toroidally closed vortices. This flow state loses its stability for
any sx – 0 and thus for small magnetic field strength sx we detect
the 2-fold symmetric, also steady 2-wTVF2p solution (Fig. 3ð6Þ).
Increasing sx this solution becomes unsteady and the 2-wTVFp2p
(Fig. 8) flip solution appears. Increasing sx the discrete 2-fold char-
acteristics of 2-wTVFp2p becomes destroyed when the non-
axisymmetric, helical, here m ¼ �1 modes become finite. This
results in the second discovered, 1-wTVFp2p (Fig. 5) flip solution.
[Note that here in both modes ð1;1Þ and ð1;�1Þ have identical
amplitudes which means the interim solution can be interpretated
as a m ¼ 1 ribben solution (1-RIB) [2] (cf. Fig. 5ð5;6Þ). [In the fol-
lowing we will only talk about the helical m ¼ 1 mode, in case of
1-wTVFsp, and 1-wTVF2p, meaning the negative counterpart
m ¼ �1 mode to be stimulated with equal mode amplitude.] The
latter, for larger sx vanishes and we find again the steady (station-
ary) 2-wTVF2p flow state (Fig. 3ð7Þ) when the non-axisymmetric
modes become zero. Due to much larger values sx the forced 2-
fold characteristic (symmetry) is much more pronounced com-
pared to the flow 2-wTVF2p at smaller sx (Fig. 3ð6;7Þ). Finally the
2-wTVF2p solution disappears with further increasing sx. The flow



Fig. 4. Visualization of the pulsing/oscillating state 1-wTVFs2p . As Fig. 3 but isosurfaces of rv ¼ �120 at Rei ¼ 150 and sx ¼ 1:38. Indicated times are ð1Þ t ¼ 0; ð2Þ t ¼ sp=4, ð3Þ
t ¼ sp=2; ð4Þ t ¼ 3sp=4 with period time sp ¼ 1:106. See also movie file movieA3.avi in SMs. Note, that the symmetry related state 1-wTVF�2p (Kz axial reflection at mid-height)
coexists. Note that the solution has S� symmetry.
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becomes subcriticle and changes to the 2-fold basic state 2-AVF
(Fig. 3ð5Þ) (analog to the scenario with increasing sx at Rei ¼ 120)
before it finally turns into turbulence.

Rei ¼ 150: Here, the scenario with increasing sx (Fig. 2ðcÞ) starts
as for Rei ¼ 130 with the classical steady stable TVF2p solution,
which loses it’s stability against the 2-wTVFp2p flip solution. How-
ever, here the 2-fold characteristic (symmetry) remain untouched
and no 1-wTVFp2p solution exists. At larger sx one finds again the
steady 1-wTVFs2p flow structure (Fig. 3ð8Þ), before with increasing
sx this flow becomes unsteady (time-dependant) in 1-wTVF2p;u
(Fig. 4) before it turns turbulent.

The fact that for increasing sx at Rei ¼ 120 and Rei ¼ 130 the
flow returns to the modulated basic state 2-AVF highlights the gen-
eral (well known) stabilizing effect of an external applied magnetic
field [15,17] (shift of bifurcation thresholds to larger values of Rei).
This upwards move of the bifurcation threshold manifest itself in
the decrease of either mode amplitudes jum;nj and in particular
the kinetic energy Ekin (Fig. 2ða; bÞ). The slightly increase of Ekin

for 2-AVF with increasing sx indicate the strengthen of the 2-fold
symmetry with larger values sx. Hereafter unstructured low-
dimensional turbulence (see SEC 3.3) appears direct out of 2-AVF
for sufficient large values of sx. However for Rei ¼ 150 we do not
observed the basic state 2-AVF and turbulence appears directly
out of the oscillating/pulsing 1-wTVF2p solution (Figs. 2ðcÞ and 4).
Note that such scenario has already been reported (for other
parameters) before [20]. Aside there is no such significant decrease
in Ekin and jum;nj as seen for lower Rei.

The 1-wTVFs2p solution (Fig. 2ðcÞ) is the (stationary) steady small
‘brother’ of the oscillating/pulsing solution 2-wTVF2p;u (cf. Fig. 4).
Obvious 2-AVF is an axial infinite extended solution and therefore
does not contain any axial wavenumber. The different axial
wavenumbers are clearly visible in the h� z;g; r � z plots in
Fig. (3). For Rei ¼ 120 all flow states have an axial wavenumber
[wavelength] kp ½2� where as for Rei ¼ 130 and 150 they have
mainly an axial wavenumber [wavelength] k ¼ 2p ½1� (except as
the appearing of transient solutions in the both flip states
1-wTVFp2p and 2-wTVFp2p). Aside all flow states in Fig. 3 are m ¼ 1
but 3ð5� 7Þ. This m ¼ 2 characteristic is clearly visible in the
vðr; hÞ plane.
3.1.1. Pulsing/Oscillating flow state 1-wTVF2p
Regarding Fig. 2ðcÞ one sees the (stationary) steady solution

1-wTVFs2p (Fig. 3ð7Þ) for Rei ¼ 150 to become an unsteady, time
dependant one, 1-wTVF2p;u with increasing sx. The time depen-
dence becomes visible in a pulsation/oscillation of the flow state
1-wTVF2p;u. Compared to former discussed steady (time-
independent) and azimuthal pinned solutions in transverse mag-
netic fields [20] 1-wTVF2p;u has a more pulsing characteristic.
Fig. 4 presents snapshots over one period sp for 1-wTVF2p;u. The
vortices pulse, they grow and shrink in size without many varia-
tion of their location (see movie movieA3.avi in SMs.) 1-wTVFs2p
and 1-wTVFp2p have a dominant helical m ¼ 1 contribution as visi-
ble in vðr; hÞ (Fig. 4ðeÞ); the latter coincide with a growth in the
mode ð1;2Þ. We mainly present this flow state for completeness,
but will not further discuss this solution as it is not in our main
focus and similar ones have already been discussed in previous
work [20].

Note, that the period of 1-wTVF2p is significant smaller than for
the former discussed flip solutions, but in typical range for such
wavy (oscillating) solutions.
3.2. Flip solutions

In the following we will have a detailed view into both flip solu-
tions 1-wTVFp2p and 2-wTVFp2p, their constitution and spatio-
temporal dynamics.
3.2.1. 1-wTVFp2p
Fig. 5 presents the variation with time t (top panel) and visual-

izations of flow structures (bottom panels) during one flip for
1-wTVFp2p solution. Note that due to repetitions (four flips in one
period) only a quarter of period sp=4 ¼ 7:253 is shown (see also
Fig. 6). In fact the unsteady, time-dependent solution 1-wTVFp2p



Fig. 5. Visualization of the flip solution (slow-fast dynamics) 1-wTVFp2p . Shown are ðaÞ dynamics with time of modes jum;nj [inset shows Ekin] as indicated over a quarter period
sp=4 due to symmetries (see text for further explanations) for Rei ¼ 130; sx ¼ 0:7 and times t as indicated. Visualizations ðbÞ � ðeÞ as in Fig. 3 with isolevel shown at rv ¼ �25.
ð1Þ t = 0; ð2Þ t = 3; ð3Þ t = 4; ð4Þ t = 4:3, ð5Þ t = 4:49; ð6Þ t = 4:56; ð7Þ t = 4:8; ð8Þ t = 5, and ð9Þ t = 7:253 ¼ sp=4; period time sp ¼ 29:012. See also movie file movieA1.avi in
Supplementary Materials (SMs). The same legends for flow visualization are used for all subsequent unsteady flows.
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has a complex spatio-temporal symmetry, a half-period-flip-
rotation symmetry Sp. The action of Sp on the velocity field is

Spðu;v ;wÞðr; h; z; tÞ ¼ ðu;v ;�wÞðr; hþ p;�z; t þ sp=2Þ: ð12Þ
The rotation results from the pinning effect of the applied trans-

verse magnetic field onto the structure in azimuthal direction
resulting in a discrete rotation invariance Rp about the axis by the
angle p. The actions of this discrete rotation and the second spatio
symmetry, the axial reflection Kz, on the velocity are

Rpðu;v ;wÞðr; h; z; tÞ ¼ ðu; v;wÞðr; hþ p; z; tÞÞ;ð13Þ
Kzðu;v ;wÞðr; h; z; tÞ ¼ ðu;v ;�wÞðr; h;�z; tÞ:ð14Þ
With respect to the general time translation

Ut0ðu; v;wÞðr; h; z; tÞ ¼ ðu;v ;wÞðr; h; z; t þ t0Þ; ð15Þ

one can formally write the spatio-temporal half-period-flip-rotation
symmetry Sp ¼ KzRpUsp=2

The time series of the different dominant mode amplitudes
jum;nj in Fig. 5ðaÞ shows a significant decrease in the dominant
axisymmetric ð0;2Þmode while at the same time the helical modes
ð1;1Þ & ð1;�1Þ equally significant increases. [The labels ð1Þ to ð9Þ
mark such time points for which the bottom panels present corre-
Fig. 6. Time series of 1-wTVFp2p . Time series of ðaÞ Ekin; ðbÞ corresponding PSD (inset show
and ðeÞ phase portraits on ðgþ;g�Þ and poincaré section ðEkin;gþÞ with g� ¼ �20 for flip s
of the references to colour in this figure legend, the reader is referred to the web versio
sponding snapshots.] This indicates the fact that this flip coincide
with non-axisymmetric, helical azimuthal m ¼ �1 mode stimula-
tion together with a change in axial wavenumber [wavelength]
2p! p! 2p [2 ! 1 ! 2] (compare Fig. 5ðb; dÞð1;5;9Þ). The sig-
nificant increase in the azimuthal m ¼ 1 mode (including it’s
higher harmonics) is also the responsible for the dramatic increase
(almost about one magnitude) in the total kinetic energy Ekin (inset
in Fig. 5ðaÞ) around the ‘flip’. The whole ‘flip’ process starts with a
slightly modulation and reorientation/deformation of the initially
symmetric two vortex pairs in the annulus (Fig. 5ð1;2Þ). This mod-
ulation strengthens with time and parts of two neighboring vortex
pairs move closer together and get compressed (Fig. 5ð3;4Þ, here in
the middle) until the flow structure reaches it’sm ¼ �1 dominance
(Fig. 5ð5;6Þ; here the 1-RIB characteristic is clearly visible) before
in a re-organization process the ð0;2Þ mode becomes reenforced
regaining the initially m ¼ 0 dominance of the flow (Fig. 5ð8;9Þ).
Note that the initial (Fig. 5ð1Þ) and final (Fig. 5ð9Þ) configuration
are almost the same but shifted by C=4.

However, there is a further interesting fact. The flip also coin-
cide with a short time rotation of the whole flow structure in azi-
muthal direction. Interestingly this rotation of the temporal m ¼ 1
dominated pattern (Fig. 5ð4� 7Þ) follows the rotation direction of
the outer cylinder and not as to expect for given set of parameters
s a long time series of Ekin), ðcÞ time series of jum;nj; ðdÞ gþ [red (gray)], and g� (black),
tates 1-wTVFp2p at Rei ¼ 130; sx ¼ 0:7. Period time is sp ¼ 29:012. (For interpretation
n of this article.)



Fig. 7. Variation of the axial wave number and space–time evolution of 1-wTVFp2p .
ðaÞ Snapshots of axial velocity profiles w for h ¼ 0 (solid lines) and h ¼ p=2 (dashed
lines) in the annulus at the mid-gap location for times t as indicated in
Fig. 5ðaÞð1� 9Þ. Note the significant change in scale of the ordinate axis in ðaÞ
around the ‘flip’ point ðv ; viÞ. Space–time plot of g for 1-wTVFp2p at ðbÞ the inner
cylinder and ðcÞ the mid-gap. Red (dark gray) and yellow (light gray) correspond to
positive and negative values, with ðbÞ g½�175;175� and ðcÞ g½�125;125�. Same
quarter period is shown as presented in Fig. 5ðaÞ for 1-wTVFp2p at Rei ¼ 130 and
sx ¼ 0:7. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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(Rei ¼ 130 and Reo ¼ �100) the inner cylinder rotation direction.
The movieA1.avi in the SMs clearly show this rotation opposite
to the one of the inner cylinder rotation (indicated by arrows in
the movie).

Interestingly, the axisymmetric ð0;1Þ mode does not play any
role (for sure it is always finite, but significant smaller than all
other in the flip process involved modes) in the flip scenario for
1-wTVFp2p, in contrast to the flip scenario for 2-wTVFp2p, in which
it is crucial and dominating. Further significant characteristic for
the flip solution 1-wTVFp2p is that the changes coincide with a
strong oscillation in all modes and energy (see also movie in SMs:
movieA2.avi). The 2-wTVFp2p do not show any kind of such periodic
fluctuations, as it do not involve higher azimuthal modes m > 0.
The dominance of the helical m ¼ 1 mode during the flip can be
clearly seen in Fig. 5ð3� 7Þ, either in the radial velocity uðh; zÞ on
an unrolled cylindrical surface in the annulus at mid-gap and the
azimuthal velocity component v in ðr; hÞ plane at mid-height. At
the same time the vector plots ½uðr; zÞ;wðr; zÞ� of the radial and axial
velocity components (including the azimuthal vorticity gðr; h ¼ 0Þ
and gðr; h ¼ p=2Þ) clearly show the temporal modified axial
wavenumber k ¼ p.

In principle almost all dynamics takes place in a relative short
time of approximately 1.1 (Fig. 5ð3� 8Þ) within a quarter period
sp=4 ¼ 7:253. Note that such a flip with all the dynamics happens
four times to complete one full period sp ¼ 29:012. As 2-wTVFp2p do
not involve any other helical modes than the ones stimulated due
to sx – 0 there is also no rotation present within the flip (see
movieA2.avi in SMs).

Fig. 6 shows quantities for longer time series. Both, the global
kinetic energy Ekin and the dominant mode amplitudes ðm;nÞ sug-
gest a period which is only a quarter of the real period. Only the
local measure of the azimuthal vorticity g� [at the inner cylinder
and mid-gap] highlights the four flip scenario within one period
which remains hidden in the first both quantities. However, there
is obviously no perfect recurrence after one flip. All quantities,
energy, modes and azimuthal vorticity show significant variations
in their maximal/extreme values over several periods (see also
inset showing long time series of Ekin).

The solution 1-wTVFp2p (as well as 2-wTVFp2p) lives on a 2-torus
invariant manifold consisting of two incommensurate frequencies.
The first corresponds to the (slow) flip-time sflip between two con-
secutive flips (Note this is just a quarter of a period 4sflip ¼ sp) and
the second one is given by the (fast) modulation/oscillation under-
lying the flip (tflip 	 0:14221). These frequencies can be clearly seen
in the PSD of Ekin, with x1 	 0:034468 (slow period) and
x2 	 7:031854 (fast period) and all their nonlinear interactions.
This very long-time imperfect variation (see inset in Fig. 6ðbÞ)
results in a complex shadowing phase portrait (g�;gþ) and and
Poincaré section ðEkin;gþÞ. The latter, in principle should give a
closed curve, manifest the 2-tori nature; However, an agglomera-
tion around a ‘circle like’ region is visible although the phase space
representation do not show an obvious simple structure; Mainly a
central axis and here from long-time disappearing and returning is
visible. One might speculate that this somehow ‘messy’ structure
(modulation/variation in the different quantities) results from a
very low frequency (VLF) underlying the dynamics due to a forced
oscillation/pulsing by the transversal magnetic field. Due to the
transversal magnetic field, the classical unsteady (time-
dependent) and rotating structures becomes pinned in azimuthal
direction (2-fold symmetry). However, instead the rotating flow
states, oscillating and pulsing flow structures appears in transver-
sal fields. Depending on various parameters the field pinning effect
on the usually rotating structure can result in a very long oscillat-
ing period which can explain the appearing of the observed VLF.
Fig. 7 provides another perspective of the half-period-flip-
rotation symmetry of 1-wTVFp2p; e.g. axial profiles. The behavior
of the wavenumber k during one flip is shown in ðaÞ either along
the field direction (h ¼ 0) and perpendicular to it (h ¼ p=2). The
differences in these both directions is based on the symmetry-
breaking magnetic field [29]. The spatio-temporal symmetry Sp is
can be seen in the axial profiles w shown in ðiÞ and ðixÞ. As the flip
coincide with strong periodic variations/modulations due to
m ¼ �1 the snapshots ðiiiÞ � ðviiiÞ can be just seen as an illustra-
tion highlighting the change in the axial wavenumber; but ðviÞ
clearly illustrates k ¼ p½k ¼ 2� while for ðiÞ and ðixÞ k ¼ 2p½k ¼ 1�.
Note the significant change in the magnitude/amplitude of w (scal-
ing on abscissa) during the flip. Corresponding space–time dia-
grams of the azimuthal vorticity on the inner cylinder wall [at
mid-gap] gðri;0; z; tÞ [gð0:5d;0; z; tÞ] are presented in Fig. 7ðbÞ.
The zero contour level is in black and clearly indicates the slowly
growing oscillation and large oscillation within the flip and chang-
ing the axial wavenumber from 2p to p and back to 2p.
3.2.2. 2-wTVFp2p
Although, regarding the main characteristics, the flip solution

2-wTVFp2p is very similar to 1-wTVFp2p, there are a few significant
differences in its structure and dynamics. As before, Fig. 8 presents



Fig. 8. Visualization of the flip solution (slow-fast dynamics) 2-wTVFp2p . As Fig. 5 but for 2-wTVFp2p with isosurfaces of rv ¼ �25 at Rei ¼ 150;Reo ¼ �100; sx ¼ 0:72. Indicated
times are; ð1Þ t = 0; ð2Þ t = 3:5; ð3Þ t = 4:25; ð4Þ t = 4:5; ð5Þ t = 4:63, ð6Þ t = 4:68; ð7Þ t = 4:75; ð8Þ t = 4:85; ð9Þ t = 6:246 ¼ sp=4; period time sp ¼ 24:982. See also movie file
movieA2.avi in SMs.
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the variation with time t (top panel) and visualizations of flow
structures (bottom panels) during one flip for 2-wTVFp2p. Crucial
and analog to 1-wTVFp2p is that one period also contains four flips.
Both solutions 1-wTVFp2p and 2-wTVFp2p share the same spatio-
temporal symmetry Sp.

The time series in Fig. 8ðaÞ (about a quarter period
sp=4 ¼ 6:246) already indicate differences. For a given set of
parameters the period time is quite similar with sp ¼ 24:984 but
also depends strongly on the parameters (see Fig. 11). Although
there is again a significant decrease in the predominant ð0;2Þmode
together with the ð2;2Þ mode there is no helical mode (in contrast
to ð1;�1Þ in the 1-wTVFp2p scenario) involved in the flip process.
Instead there is a drastic increase in the axisymmetric mode
ð0;1Þ. This indicates the fact that 2-wTVFp2p remains axisymmetric
with restriction to the discrete rotation p due to the symmetry
breaking transversal magnetic field. In parallel the total kinetic
energy Ekin drastic decrease (inset in Fig. 8ðaÞ) during the flip high-
lighting a ‘simplification’ of the flow structure; this is in contrast
due to the increase of Ekin during the flip process for 1-wTVFp2p with
finite and growing helical m ¼ �1 modes. Furthermore there is no
oscillation or modulation in any mode or the energy within the flip
process.

As 2-wTVFp2p do not contain any oscillation or modulation the
dynamics is simpler during the flip. The main dynamics can be
Fig. 9. Time series of 2-wTVFp2p . As Fig. 9 but for flip state 2-
described as an annihilation and regeneration of vortex pairs (in
axial direction). First the two vortex pairs relocate in its axial posi-
tion (direction), while they move closer together which results in
stretch and compressions in the annulus (Fig. 8ð2-4Þ). Note, for
the scenario shown in Fig. 8 the gap opens at about mid-height.
With increasing time the compression of the two vortex pairs
results in an annihilation of the two neighboring inner vortices
between the two pairs (Fig. 8)ð5Þ, just leaving a single vortex pair
in the annulus (Fig. 8ð6Þ) with k ¼ p (see also Fig. 10ðaÞ). Hereafter
two new vortices start to form in the center region about mid-
plane (Fig. 8ð7Þ), which keep growing to establish again a temporal
stable two vortex pair solution (Fig. 8ð8;9Þ). Hereafter this process
first repeats once identical with annihilation and generation of vor-
tices in the same matter, in particular the same axial position (for
shrinking and expanding). However, in the following (third flip)
the general dynamic repeats again, but now the vortices, which
annihilate and re-generate change. Regarding Fig. 8 this means
the two pair of vortices become compressed at the mid-height,
before both inner vortices vanish and new ones become re-
generated in the wide range of annulus without any main vortex
structure, to re-generate the two vortex-pair flow. This process
exactly repeats again and thus after all together four flips (two plus
two) perform one full period sp to come back to the initial state
again. The footprints/marks in one period are best visible in g�
(Fig. 9ðdÞ) highlighting the four flips with two different couple of
wTVFp2p at Rei ¼ 150; sx ¼ 0:72. Period time sp ¼ 24:982.



Fig. 10. Space–time evolution of 2-wTVFp2p . As Fig. 10 but for 2-wTVFp2p at Rei ¼ 150
and sx ¼ 0:72. Red (dark gray) and yellow (light gray) correspond to positive and
negative values, with ðbÞ g½�150;150� and ðcÞ g½�100;100�. Same quarter a period is
shown as presented in Fig. 8ðaÞ. Note that here the amplitudes of w in ðaÞ do not
significant change around the flip point.

Fig. 11. Variation of flip-time with the strength of magnetic field sx for ðaÞ Rei ¼ 130
and ðbÞ Rei ¼ 150. Red [orange] solid [dashed] curves are fits of the form
sflip ¼ a0 þ a1 expða2 � sxÞ (c.f. Fig. 2ð1Þðb; cÞ). Note, that sflip is just a quarter of the
period sp of the solutions.
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flips (2 + 2). Thereby the r � h plots of v in (Fig. 8ðeÞ) clearly show
the permanent existing 2-fold symmetry due to the transversal
magnetic field in contrast to the m ¼ 1 interim solution appearing
in 1-wTVFp2p solution (Fig. 5).

Other flow structures with similar generation and annihilation
of vortices have been described in former works [36] for classical
fluid. However there are some crucial differences to the present
study. First of all the work [36] considered finite system setup with
minimum size C ¼ 4, for which the generation and annihilation
has been found due to global circulation as driving mechanism. In
our case the latter do not exist due to axial periodic boundary con-
ditions. Moreover the process is ‘one-way’ directed as vortices are
formed near the axial walls, in the Ekman boundary layer region,
move towards mid-height where they become annihilated. Never
less, as far as we know this is the only process which is closest
to the here found flip solutions.

Mainly both transient appearing solutions during the flip with
k ¼ p and filling the whole bulk, differ for 1-wTVFp2p (Fig. 5)) and
2-wTVFp2p (Fig. 8) due to the azimuthal modes m ¼ �1 to be finite
in the first scenario. The r � z plots in Figs 5ð6Þ and 8ð6Þ clearly
show the change in axial wavenumber [wavelength] k ¼ p
[k ¼ 2] with a solution of only two counter-rotating vortices filling
the annulus. However, while for 1-wTVFp2p (Fig. 5) the vortex pair
fills the whole bulk in the case of Fig. 8 the two vortices of the sin-
gle vortex pair are arranged very close to each other leaving a large
part of the annulus without any significant flow structure.

The flip solutions are typical examples for slow-fast-dynamics
in dynamical systems [37]. Here it is based on the coexisting of
at least two unstable (one more and one less stable) solutions. It
would be interesting to see a similar flip solution, regarding the
axial wavenumber, for helical flow states with m > 0. So far we
don’t have any evidence if such solutions might exist or not. If
so, they might most likely share their structural properties and
involving dynamics with mixed-cross-spiral solutions (MCS)
[38,39], which is reasonable to speculate as 1-wTVFp2p clearly
shows 1-RIP characteristics.

Fig. 9 shows further quantities of 2-wTVFp2p for long time series.
As seen for 1-wTVFp2p, neither the global energy kinetic energy Ekin

or the dominant mode amplitudes ðm;nÞ give the real periodicity
sp, they almost repeat with a quarter of it. Only the local measure
of the azimuthal vorticity g� clearly shows the period sp (consist-
ing of four flips). Compared to 1-wTVFp2p the long time modulation
(inset in Fig. 9ðbÞ) is much clearer resulting in the VLF. As a result
also phase portrait ðg�;gþÞ and Poincaré section ðgþ; EkinÞ show a
better visualization of the 2-torus manifold, although the VLF
(due to oscillation during the flip for sx) makes them a little fuzzy.

As seen for 1-wTVFp2p (Fig. 7ðaÞ) the variation of profiles w for
2-wTVFp2p (Fig. 10ðaÞ) clearly indicate thechanges in axialwavenum-
berkduring theflip from2p topandback to2p. But in contrast to the
scenario for 1-wTVFp2p the magnitude/amplitude of the velocity is
almost negligible (scaling on abscissa) over one flip.

As the flip for 2-wTVFp2p does not contain any periodic oscilla-
tion, the corresponding space–time diagrams of the azimuthal vor-
ticity on the inner cylinder wall [at mid-gap] gðri;0; z; tÞ
[gð0:5d;0; z; tÞ] (Fig. 10ðbÞ) look much smoother.

Fig. 11 shows the variation with sx of the flip-time (a quarter of
the period sp) for both solutions 1-wTVFp2p and 2-wTVFp2p. For both
solutions the flip-time increases with sx before they cease to exist
and the variation follows an exponential law of the form
sflip ¼ a0 þ a1 expða2 � sxÞ (see red curves in Fig. 11 presenting corre-
sponding fits). Topological speaking 1-wTVFp2p and 2-wTVFp2p are 2-
tori (see also phase space and Poincaré sections in Figs. 6 and 9)
which collapse leaving a simple steady fixed point solution behind
(either 1-wTVFs2p or 2-wTVFs2p). Obvious, there is a clearly visible
bend in Fig. 11ðaÞ, where 1-wTVFp2p bifurcates/appears out of
2-wTVFp2p. Although it looks like that the (short) curve for
2-wTVFp2p follows a similar exponential law (dashed line fit), the
section is to short to really prove this. As both solutions follow sim-
ilar exponential law in its flip time variation, the non-axisymmetric
role do not seem to play any significant role and are negligible.
3.3. Shear Reynolds number, momentum flux and cross-flow energy

In the following we will have a closer look into the turbulent
dynamics of ferrofluids which appears for larger values sx (see
Fig. 2).

In order to have a better comparison, we will consider the shear
Reynolds number as another combined parameter to characterize
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the system Reshear ¼ 2jgReo � Reij=ð1þ gÞ [35]. Moreover the con-
served transported quantity between two cylinders can be
expressed in terms of the angular velocity flux [40]

Jx ¼r3ðhuv=riAðrÞ � m@rhv=riAðrÞÞ ð16Þ
¼Jconv þ Jadv ; ð17Þ

where AðrÞ stands for the averaging over the surface of a concentric
cylinder at radius r. The both contributions, Jconv ¼ r3ðhuv=riAðrÞ
stands for the averaged convective and Jadv ¼ r3ðhuv=riAðrÞ�
m@rhv=riAðrÞÞ for the advective, also called molecular transport
[35]. Finally, JN ¼ Jx=J0, describes the non-dimensionalized momen-
tum flux, normalized by the angular velocity flux for laminar (circu-
lar Couette flow) flow, with J0 ¼ ðmr2i r2o@rððvðriÞ=riÞ � ðvðroÞ=roÞÞÞ.
Fig. 12. Variation in angular momentum and angular flux. ðaÞ Angular momentum
LðrÞ ¼ rhvðrÞih;z=Rei and ðbÞ angular flux Jx (in total (solid lines) and its components
Jadv (dashed lines) and Jdiff (dotted lines)) versus the radius r for turbulent flows at
Reshear and sx as indicated.
We are going to consider three different parameter sets: A:
Rei ¼ 120;Reshear ¼ 226;67; sx ¼ 1:5; B: Rei ¼ 130;Reshear ¼ 240;
sx ¼ 1:55; C: Rei ¼ 150;Reshear ¼ 266;67; sx ¼ 1:45. Fig. 12 shows
the angular momentum LðrÞ and the angular flux JðrÞ=J0 for these
three cases. The turbulent dynamics seems to be quite similar, in
particular LðrÞ only show small increase towards the outer cylinder
in the profiles for larger values Reshear . While Jadv is almost identical
for the three different parameter sets, Jdiff shows the largest varia-
tions; Jx, in particular its maximum, moves outward for largest
value Reshear . Compared toward classical turbulent dynamics at
usually significant larger Re [35,41] the profiles of the typical
Fig. 13. Variation with energies Variation with energies for flows at three
parameters sets as presented in Fig. 12. ðaÞ A: Rei ¼ 120; sx ¼ 1:5. ðbÞ B:
Rei ¼ 130; sx ¼ 1:55. ðcÞ C: Rei ¼ 150; sx ¼ 1:45. Shown are top panel: Time series
of kinetic energy Ekin and cross-flow energy Ecf and bottom panel: Space–time plots
of the radial component of the cross-flow energy, Ecf ;rðr; tÞ ¼ hu2

r þ u2
z iAðrÞ , averaged

over the surfaces A of a concentric cylinder of radius r. Red (dark gray) [yellow (light
gray)] color indicates high (low) energy value
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quantities Jx for ferrofluidic turbulent flows look different, in prin-
ciple simpler (in the sense of less disordered). They do not feature
the typical large variations and steepness close to the wall region.
In fact they are much ‘smoother’. This suggest that ferrofluid turbu-
lence is different to the classical turbulence, e.g. similar to elasto-
inertial turbulence differ from the classical one. However, in the
present case with the very smooth profiles and relative low varia-
tion it might be even better to talk from ‘mildly’ chaotic behavior in
ferrofluidic flows instead of using the very generic expression fer-
rofluid turbulence. Moreover, it is important to mention, that we
are absolutely aware that here only three different sets of param-
eters are considered. Further, future studies are necessary and
planed to verify these first results. However, these three parameter
sets already give a fairly good impression on the turbulent/chaotic
dynamics.

Finally regarding turbulent dynamics, we look at the cross-flow
energy, which usually has an important say on this matter, regard-
ing turbulent motion. Fig. 13 shows the variation with time for the
total kinetic energy Ekin as the cross flow energy Ecf (Eq. (11))))
together with the space–time plots of Ecf ;rðr; tÞ for three the param-
eter sets: A,B, and C. In general the fluctuations and variations of
either Ekin and Ecf are in a similar range for all three parameter sets.
Furthermore Ecf is about 30–40% smaller than Ekin and mainly fol-
lows the fluctuations of the last one.

Space–time plots of the cross-flow energy exhibit various smal-
ler localized strong peaks (indicated by the red (dark gray) spots/
bursts) regions, more or less homogeneously arranged over radius
and time. However from time to time also larger spots ða; cÞ appear
indicating a more pronounced turbulent characteristic. For classi-
cal turbulent dynamics the number of such spots is significant lar-
ger and in particular a larger change is visible close to the cylinder
walls. Thus, this and the all in all the relatively smoothness of the
space–time plots also suggest that turbulence in ferrofluids differ
from the classical one. The interaction of the applied magnetic field
with the ferrofluid particles hinders their free motion and there-
fore smoothen the chaotic dynamics.
4. Summary and conclusion

We have analyzed numerically the ferrofluidic flow under
symmetry-breaking transversal magnetic field in an axial periodic
short aspect ratio (C ¼ 2) and wide gap Taylor-Couette system. For
our numerical calculations, we used an approach analogous to the
model of Niklas et al. [8,27] and studied the variation of magnetic
field strength sx. For any sx – 0 all flow states are inherent three
dimensional and wavy-like modulated (2-fold symmetry) due to
the symmetry-breaking nature of the transversal magnetic field
[15,17,29]. We detected several either steady and unsteady (time
dependant) flow structures with either one or two pair of vortices
in the annulus (in axial direction), corresponding to an axial
wavenumber k ¼ 2p or k ¼ p.

In addition to these different types we found unsteady flip solu-
tions switching for a short time between these two characteristic
wavenumbers k ¼ 2p! p! 2p. Such behavior presents a typical
slow-fast dynamics in time dependant systems. In the present
study a permanent switch between two unstable solutions. The flip
solutions itself are found to be either 2-fold axisymmetric (natural/
intrinsic due to the symmetry-breaking effect of the transversal
magnetic field), 2-wTVFp2p, toroidally structure, or incorporating
helical m ¼ �1 contributions, 1-wTVFp2p, respectively. In both sce-
narios the flip means a (short) temporal change in the axial
wavenumber [wavelength] from 2p to p and back to 2p, which
happens in a relative short time (about 1 diffusion time) compared
to the periodicity of the solutions. In fact four flips describe one
period of the solutions, respectively.
Furthermore, either 1-wTVFp2p and 2-wTVFp2p describe complex
solutions, living on 2-tori invariant manifolds. However the pre-
sents of an additional VLF makes their observation ‘squeeze’, e.g.
phase portrait. In fact 1-wTVFp2p bifurcates out of 2-wTVFp2p, when
the helical �1 modes become finite. Independent, which of the
solutions, with increasing field strength sx they both show an expo-
nential increase in its period time. When the 2-tori cease to exist
both leave the steady fixed point solution 2-wTVF2p behind.

Finally we investigated turbulent dynamics of such ferrofluidic
flows, using three exemplary parameter sets with comparable
shear Reynolds number Reshear and magnetic field strength sx. We
find turbulence to appears either out of the 2-fold (due to sx – 0)
basic state 2-AVF (subcriticle) or out of an already former bifur-
cated solution (supercritical). Consider characteristic quantities
as cross flow energy Ecf (about 30–40% smaller than Ekin), angular
momentum LðrÞ and the angular flux JðrÞ we showed that this
low Reynolds number turbulence in ferrofluidic flows differ from
the classical, usually high Reynolds number turbulence. In particu-
lar the angular flux is much smoother and less steep close to the
walls, and the cross-flow energy also shows a quite homogeneous
and low (not many extreme bursts/outputs) over either time and
radial expansion. Thus, this all let us speculate, that turbulence
in ferrofluids differ from the classical one. The origin is the interac-
tion of the applied magnetic field with the ferrofluid particles hin-
ders their free motion and therefore smoothen typical chaotic
dynamics. Aside this direct effect due to finite applied field also
the agglomeration of particles, chain formation (elongational flow
effects) and significant the material properties of the used fer-
rofluid play a significant role.

Aside the her discussed mainly dominant axisymmetric vor-
tices, the existence of similar flip solution within helical flow states
is questionable. However, their interaction between non-
axisymmetric itself and axisymmetric vs non-axisymmetric would
be very interesting and might give rise to further complex dynam-
ics in the ferrofluidic Taylor-Couette flow.

Acknowledgments

S.Altmeyer is a Serra Húnter Fellow.
Appendix A. Supplementary data

See supplemententary materials for the complete spatio-
temporal evolution of either both flip solutions 1-wTVFp2p;
1-wTVFp2p and oscillating wavy solution 1-wTVF2p;u.

Supplementary data associated with this article can be found, in
the online version, athttps://doi.org/10.1016/j.jmmm.2017.12.073.
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