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A B S T R A C T   

This work provides a numerical investigations of propagating vortex flow states (pVs) for ferrofluidic Couette 
flow with small aspect ratio and fixed non-rotating end-walls. The system is subjected to oblique magnetic fields 
as superposition of axial and transverse orientated fields. Such field configuration breaks the basic system 
symmetries and renders all flow structures to be inherently three-dimensional with complexer flow dynamics. 
Under oblique field configuration pV states are not direct present at onset. Instead oscillating flow states (oVs) 
bifurcate out of the stationary state. Basically these oVs hold same symmetries as pVs, which eventually evolve in 
a smooth transformation out of the oVs. pVs under oblique fields appear periodic or quasi-periodic, which render 
them topological speaking to exist on either two- or one-dimensional invariant manifolds as 2-torus or limit cycle 
(1-torus) solutions, respectively. In detail, structural modifications and changes in spatial and temporal behavior 
for pV solutions are studied with changing the magnetic field strength of the applied magnetic field.   

1. Introduction 

The flow between two concentric differentially rotating cylinders, 
the Taylor-Couette flow, has played a central role in the development of 
hydrodynamic stability theory [1–4] and has been a paradigm to 
investigate many fundamental nonlinear dynamical phenomena, pattern 
formation and self-organization. Its geometric allows for well-controlled 
experimental studies [5,6]. 

Considering realistic finite-size Taylor-Couette systems (TCS), the 
liquid is usually enclosed by the axial end walls at the top and bottom. 
Both, numerical and experimental works demonstrated that the result
ing effects of these end walls are not negligible [22–27] even in the large 
aspect ratio TCS. The walls can thus have a significant effect on the flow 
dynamics. 

A huge amount of literature in this area studied Taylor-Couette flow 
with a simple ‘classical’ fluid, and also with special focus on classical 
enclosed Taylor-Couette flow [1,3,4,6,28,29]. 

In recent years there has been an increasing amount of interest in the 
flow dynamics considering complex fluid as ferrofluids [20,21,7–19], 
which are manufactured fluids consisting of dispersion of magnetized 
nanoparticles in a liquid carrier. Consider ferrofluids [20,21], further 
parameters, such as the orientation of an applied magnetic field with 
respect to the fluid flow become important as this has crucial influence 
to the magnetoviscous effect in ferrofluids [30]. For example a 
symmetry-breaking transverse magnetic field modifies all flow struc
tures in the TCS to become intrinsically three-dimensional [7,9,16]. 

Time dependent and propagating flow pattern are quite common in 

TCS, e.g. most prominent primary bifurcating spiral vortices [5,31,6], or 
secondary bifurcating wavy Taylor vortices [32–34], etc. One common 
feature of these is the fact that they typically incorporate an azimuthal 
motion, typically rotation. Instead flow pattern, such as propagating 
vortices (pVs) which only involve axial motion are more rare. For 
classical TCS and ferrofluidic flow under pure axial field such pVs are 
characterized as “M = 0”-mode [35,10,37] solutions, bifurcating out of 
stationary, axisymmetric cellular states (nV), i.e. toroidally closed non- 
propagating vortices [36]. 

The current paper is the second of two parts studying the influence of 
propagating vortices under different magnetic field configuration. In the 
present study we focus on oblique magnetic fields as a superposition of 
axial and transversal magnetic fields. Both configurations, pure axial and 
pure transversal magnetic fields are studied in detail in the first part [37] 
with special focus on modification in system symmetries. 

Although becoming fully three-dimensional, pV states under sym
metry breaking transversal magnetic field keep their characteristics 
including pure axial motion and remaining topological speaking a limit 
cycle solution (1-torus) [37]. However, this changes under oblique 
magnetic field configuration. The superposition of axial and transversal 
magnetic fields introduces further mode coupling [7] which eventually 
result in the appearing of a secondary incommensurable frequency. This 
renders the flow to be only quasi-periodic and as such to live on a two 
dimensional invariant manifold, i.e. a 2-torus solution. 

In addition the bifurcating time dependent solutions appearing in a 
pitchfork bifurcation out of the stationary states do not necessarily direct 
include any propagation. Instead they only involve an axial oscillation 

Contents lists available at ScienceDirect 

Journal of Magnetism and Magnetic Materials 

journal homepage: www.elsevier.com/locate/jmmm 

https://doi.org/10.1016/j.jmmm.2021.167788 
Received 7 July 2020; Received in revised form 9 December 2020; Accepted 14 January 2021   

www.sciencedirect.com/science/journal/03048853
https://www.elsevier.com/locate/jmmm
https://doi.org/10.1016/j.jmmm.2021.167788
https://doi.org/10.1016/j.jmmm.2021.167788
https://doi.org/10.1016/j.jmmm.2021.167788


Journal of Magnetism and Magnetic Materials xxx (xxxx) xxx

2

close to onset, which changes with variation in field strength in a smooth 
transition into propagating vortex solutions. Such axially oscillatory flow 
state has been reported earlier in TCS for either classical fluid, numerical 
and experimental in [38,39] as well as ferrofluid under magnetic field 
[19]. 

The overall goal of this study (first and second part) is to expand the 
parameter range in which the pV states are existing, stable and unstable, 
and further to investigate the topology of these solutions in ferrofluids in 
the presence of different magnetic fields. 

2. Methods 

2.1. System setting and the Navier–Stokes equation 

We consider a standard Taylor-Couette system (TCS) (Fig. 1) con
sisting of two concentric, independently rotating cylinders. Within the 
gap between the two cylinders there is an incompressible, isothermal, 
homogeneous, mono-dispersed ferrofluid of kinematic viscosity ν and 
density ρ. The inner and outer cylinders have radius Ri and Ro, and they 
rotate with the angular velocity ωi and ωo, respectively. Here, we 
consider rigid boundary conditions in the axial direction with stationary 
non-rotating lids and no-slip boundary conditions on the cylinders. The 
height-to-gap aspect ratio is fixed to Γ = L/d = 4. The system can be 
characterized in the cylindrical coordinate system (r, θ, z) by the velocity 
field u = (u, v,w) and the corresponding vorticity field ∇× u = (ξ,η,ζ). 
The radius ratio of the cylinders, Ri/Ro is kept fixed at 0.5. A homoge
neous oblique magnetic field H = Hxex +Hzez (Fig. 1) with an axial 
component Hz and transversal component Hx is considered. [Hz and Hx 
being the field strengths.] Length and time scales of the system are set by 
the gap width d = Ro − Ri and the diffusion time d2/ν, respectively. The 
pressure in the fluid is normalized by ρν2/d2, and the magnetic field H 
and the magnetization M can be conveniently normalized by the 
quantity 

̅̅̅̅̅̅̅̅̅̅
ρ/μ0

√
ν/d, with free space permeability μ0. These consider

ations lead to the following set of non-dimensionalized hydro-dynamical 
equations [13,41]: 
(

∂t +u⋅∇
)

u − ∇2u+∇p =

(

M⋅∇
)

H+
1
2
∇×

(

M × H
)

,∇⋅u = 0. (1)  

On the cylindrical surfaces, the velocity fields are given by u(ri, θ, z) =
(0,Rei, 0) and u(ro,θ,z) = (0,Reo,0), where the inner and outer Reynolds 

numbers are Rei = ωirid/ν and Reo = ωorod/ν, respectively, where 
ri = Ri/(Ro − Ri) and ro = Ro/(Ro − Ri) are the non-dimensionalized inner 
and outer cylinder radii, respectively. In the present work we consider 
counter-rotating cylinders and therefore keep them fixed to Rei = 195 
and Reo = − 300, respectively, giving a rotation ratio Reo/Rei ≈ − 1.54. 

Eq. (1) is to be solved together with an equation that describes the 
magnetization of the ferrofluid. Using the approach of Niklas [40] 
(derived from the theory by Shliomis [20] under the assumption of a 
stationary magnetization) with a small value of ||M − Meq|| and small 
magnetic relaxation time τ: |∇× u|τ≪1. (see Appendix in [37] for de
tails) leads to the following ferrohydrodynamical equations. 
(

∂t + u⋅∇
)

u − ∇2u+∇pM = s2
N

{

∇2u −
4
5
[∇⋅(SH)] − H ×

[
1
2
∇×

(

∇

× u × H
)

− H ×

(

∇2u
)

+
4
5
∇

×

(

SH
)]}

,

(2)  

S is the symmetric component of the velocity gradient tensor [41,13]. 
Terms in Eq. (2) containing S describe consider elongational flow effects 
incorporating agglomeration and particle–particle interactions [41,13]. 
The pre-factor 4/5 represents the value of the so-called transport-coef
ficient λ2, based on experimental observations [42,41]. pM is the dy
namic pressure incorporating all magnetic terms that can be expressed 
as gradients including the corresponding part of the Kelvin force (M⋅∇)H 
resulting from the equilibrium magnetization. Thus the effect of the 
magnetic field and the magnetic properties of the ferrofluid on the ve
locity field can be characterized by a single parameter, the magnetic 
field or the Niklas parameter [40]: 

s2
N = s2

x + s2
z , (3)  

with 

s2
x =

2(2 + χ)HxcN

(2 + χ)2
− χ2η2

, s2
z = HzcN . (4) 

Here, χ is the magnetic susceptibility of the ferrofluid, which can be 
approximated by Langevin’s formula [45], and the Niklas coefficient cN 

depends on the properties of the ferrofluid and magnetic field [40,7]. s2
x 

corresponds to the ratio ̃ηr/η̃ between magnetic rotational viscosity and 
viscosity in absence of any magnetic field [43,44,40,20]. η̃r reflects the 
fact that the magnetic volume force which tends to align the magnetic 
moments being fixed to the particle parallel to the magnetic field hinders 
the free rotation of the magnetic particles due to the local vorticity Ω of 
the fluid. 

The ferrohydrodynamic system Eq. (2) is solved numerically with the 
code G1D3 [6]. G1D3 combines a finite difference method of second 
order in (r, z) and time (explicit) with spectral decomposition in θ. 
Further detail regarding the numerical approach to solving the equa
tions is outlined in the Appendix of the first part of this study in [37]. 

In this paper we present results for oblique orientated magnetic fields 
(sx ∈ [0,1],sz ∈ [0,1]). These values/parameters correspond to moderate 
magnetic fields used in several experiments [46,8,9]. 

Worth to emphasize the limitation of the Niklas approximation, 
which results from the stationary case and for small deviations of the 
magnetization near equilibrium, from one relaxation equation with one 
relaxation time. Thus the relaxation into equilibrium is determined by a 
relaxation constant that can depend on the magnetic field. As already 
stated by Niklas [40], the basic assumption is that the time t identifying 
the time scale for dynamical changes of the flow is larger than 10− 6s. 

2.2. Numerical methods 

The ferrohydrodynamical equations of motion Eq. (2) can be solved 
Fig. 1. Schematic of the Taylor-Couette system (TCS) with an external applied, 
oblique orientated homogeneous magnetic field Hext = Hxex + Hzez. 
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[7,12,13] by combining a standard, second-order finite-difference 
scheme in (r, z) with a Fourier spectral decomposition in θ and (explicit) 
time splitting. The variables can be expressed as 

f

(

r, θ, z, t

)

=
∑mmax

m=− mmax

fm

(

r, z, t

)

eimθ, (5)  

where f denotes one of the variables {u, v,w, p}. For the parameter re
gimes considered, the choice mmax = 16 provides adequate accuracy. We 
use a uniform grid with spacing δr = δz = 0.02 and time steps 
δt < 1/3800. For diagnostic purposes, we also evaluate the complex 
mode amplitudes fm,n(r, t) obtained from a Fourier decomposition in the 
axial direction: 

fm

(

r, z, t

)

=
∑

n
fm,n

(

r, t

)

einkz, (6)  

where k = 2πd/λ is the axial wavenumber. 
For code validation especially with respect to here studied pV states a 

comparison with experimental findings by Ilzig et al. [10] is presented in 
[37]. Further some reproduction and comparison towards experimental 
data are illustrated in the Supplementary Materials. 

2.3. Symmetries & nomenclature 

The schematics in Fig. 2 illustrates the here studied parameter space 
(sx ∈ [0,1],sz ∈ [0,1])). As detailed discussed in the first part [37] a pure 
axial magnetic field preserves all basic system symmetries [7,8,37,16], 
while a transversal magnetic field destroys these. However, instead they 
are replaced by complexer discrete space–time symmetries [13,37]. For 
further details of these symmetries with respect to propagating vortices, 
we refer to [37]. Having an oblique magnetic field further increase the 
complexity in the flow structures and modifying the symmetries. 

The propagating vortices itself can basically distinguished in two 
types of flow structures. First type, either with simultaneously appearing 
vortices near both lids, which thereafter are also simultaneously prop
agating contrarily towards mid-height where they eventually become 
annihilated. In the second type similar generation, propagation and 
annihilation can be observed, but with key difference that the dynamics 
is not symmetric in the upper and lower half of the system. Instead the 
dynamics is alternating between both, upper and lower system half. This 

scenario is independent of any magnetic field and has been also 
observed for classical fluid in TCS [35]. For either pure axial and pure 
transversal fields it has been discussed in detail in the first part of this 
study [37]. There the corresponding solutions were identified/denoted 
as pVs

2 and pVa
2 (index 2 to characterize that the flows are fully 3D due to 

m = 2 stimulation under symmetry breaking transversal magnetic field 
[27,16]). However, these notation also include different specific sym
metries (cf. [37]) which are not necessarily maintained under oblique 
field configuration. Thus, in order to avoid any confusion in this 
manuscript, we will describe the vortex solutions with symmetric 
appearance and dynamics as oVS

2,1 [pVS
2,1] and with asymmetric 

appearance and dynamics as oVA
2,1 [pVA

2,1], respectively. This only in
dicates the type of pV [oV] state without indication of any further sys
tem symmetries. 

The index 2,1 identify all solutions present under oblique magnetic 
field, based on the fact that both m = 2 modes (also for pure transversal 
fields) and m = 1 modes are stimulated/finite under such applied 
magnetic fields [7,16]. 

Although the basic symmetries are destroyed under oblique field 
configuration, a complexer reflection KHxz

z about the annulus mid-height 
plane together with an inversion of the magnetic field direction, i.e 
reflection of both components axial and transversal at the same time, 
remains. Aside, given an aperiodic solution (with period τ), the flow 
field is also invariant under the discrete time translation Φτ. These 
symmetries read: 

KHxz
z

(
u, v,w,Hx,Hz

)(
r, θ, z, t

)
=
(
u, v, − w, − Hx, − Hz

)(
r, θ, − z, t

)
(7)  

Φτ(u, v,w,Hx,Hz)(r, θ, z, t) = (u, v,w,Hx,Hz)(r, θ, z, t+ τ). (8)  

Further, inverting only the axial field direction (cf. Section 2.3), 
Hz→ − Hz), while maintaining the other (transversal) one unchanged 
results in the appearance of a pair of symmetry related solution 

KHx
z

(
u, v,w,Hx, − Hz

)(
r, θ, z, t

)
= (u, v,w,Hx,Hz)

*( r, θ, z, t
)

(9)  

This symmetry appears in phase space projection in (η− , η+)-plane as a 
reflection at the diagonal line η− = η+ (cf. gray colored curves in Fig. 5 
which illustrate corresponding symmetry related solutions). 

3. Results 

3.1. Bifurcation dynamics 

In absence of any magnetic field, th pV solution already has one 
characteristic frequency identifying it as limit cycle solution and as such 
to live on a one dimensional invariant manifold (1-torus). Although a 
pure transversal field breaks the basic system symmetries and renders all 
flows to be inherently 3D (due to stimulated m = 2 modes), it does not 
change the basic topological appearance of the propagating vortex so
lutions, the flow remains periodic and invariant only under complexer 
space–time symmetries (cf. [37,13]), keeping it limit cycle characteris
tics. This holds similarly for both, pVS

2,1 and pVA
2,1. 

However, this changes for oblique field configuration. The super
position of transversal and axial field result in additional stimulated 
modes m = 1 (aside m = 2) [7,16]. As a result another incommensurable 
frequency may appear, which renders the flow (depending on various 
parameters) to exist on a two dimensional invariant manifold (2-torus). 
In the present study we focus on qualitative and quantitative analysis 
and underlying bifurcation scenario & sequences. 

3.1.1. Bifurcation scenario and period time for sxz 
Following we will focus on oblique fields with identical magnetic 

field strength, sx = sz, which for simplicity we will denote as sxz ≡ (sx =

sz). 
The bifurcation diagram with sxz is shown in Fig. 3, including an inset 

Fig. 2. Schematics illustrating the studied parameter space (sx ∈ [0, 1], sz ∈ [0,
1])). The present study crucially focus on the simultaneous variation of axial 
and transversal magnetic field strength sxz ≡ (sx = sz) (cf. [37] for pure axial 
and trans.versal fields.). 
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illustrating corresponding evolution in period time τ for the different 
flow states. At sxz = 0 one finds the pure/classic periodic limit cycle so
lution pVS [35,37], which becomes immediately destroyed as soon sxz ∕=

0 resulting in the only quasi-periodic 2-torus solution pVS
2,1(2T). With 

increasing the field strength, sxz, the (time-averaged) modal kinetic 
energy Ekin for pVS

2,1(2T) grows monotonously. At sxz ≈ 0.33 a frequency 
locking appears which result in a simpler limit cycle solution pVS

2,1(lc). 
Meanwhile Ekin continuously grows with same slope as before. At sxz ≈

0.41 the overall flow dynamics change significantly via a smooth tran
sition into oVS

2,1(lc). This new flow state, oVS
2,1(lc), only involves an 

oscillation and no propagating of vortices anymore. Further increasing sxz, 
oVS

2,1(lc) loses it’s stability at sxz ≈ 0.43 and moves transient towards 
oVA

2,1(lc) which is another oscillating solution, but with asymmetric/ 
alternating dynamics instead. Increasing sxz oVA

2,1(lc) disappears in the 
pitchfork bifurcation at sxz = 0.445 leaving the stationary solution 6 V2,1 
behind. Worth to mention, that for even larger sxz also 6 V2,1 disappears 
and one finally finds the basic state CCF2,1 (as described for classical 
fluid in [36]). On the other side, with decreasing sxz, after oVA

2,1(lc) ap
pears stable in the pitchfork bifurcation out of 6 V2,1 it change in a 
smooth transient into the propagating vortex solution, pVA

2,1(lc). At sxz ≈

0.41 before pVA
2,1(lc) eventually loses stability at sxz ≈ 0.375 and the flow 

moves transient towards pVS
2,1(lc). Further decreasing at sxz ≈ 0.33 the 

flow becomes quasi-periodic (2-torus solution) again, pVS
2,1(2T), while 

remaining stable until sxz = 0. Worth to mention, that Ekin of symmetric 
and asymmetric solutions oVS

2,1(lc) [pVS
2,1(lc)] and oVA

2,1(lc) [pVA
2,1(lc)], 

respectively, are identical (cf. [37] for details regarding the scenario in 
pure axial magnetic field). 

In parallel, the corresponding period time τ behave just opposite and 
decreases monotonously with increasing sxz before oVS

2,1 [oVA
2,1] van

ishes (inset in Fig. 3). Similar behavior has been detected for pure axial 
and transversal magnetic fields, respectively, in part 1 [37] and more
over is in congruence with the well known stabilization effect of mag
netic fields [40,7,8,8], the effective shift of the marginal stabilization 
threshold to larger control parameters. Recently Ilzig et al. [10] 
described this in their experimental study of pVs under pure axial 
magnetic field with one-side open boundary condition, as change 
(decrease) in orbital frequency of pVs with increasing field strength. 
Interestingly the period time τ for o[p]VA

2,1 is slightly larger than the one 

for o[p]VS
2,1 at same parameters. Without going into detail we detected 

this small time difference to result from slightly different processes/ 
dynamics at mid-height region. Here the central, mid-height region act 
as a defect structure, separating regions with different motion (here 
contrarily). More details regarding mechanism of separating defects can 
be found in [47]. 

General speaking, due to the stabilization effect, an increase in the 
magnetic field strength (shown for sxz in Fig. 3, cf. Figs. 3 and 8 in [37] 
for pure axial and transversal magnetic fields), independent of the field 
direction has qualitative a similar effect as decreasing the inner cylinder 
rotation, Rei, as another control parameter [7,8]. 

3.1.2. Asymmetry with sxz 
For quantitative measure, Fig. 4 illustrates the asymmetry parameter 

ηA = (Δη+2 − Δη2
− )

1/2 with Δη± = max(η±) − min(η±) as already intro
duced in the first part [37]. Thus ηA measures the asymmetry regarding 
the diagonal η+ = η− . With increasing sxz, the asymmetry parameter ηA 

grows for pVS
2,1(2T), whereby the slope continuously increases. 

The significant change in the behavior of ηA at sxz ≈ 0.31 results from 
the topological change from being a quasi-periodic 2-torus solution, 
pVS

2,1(2T), towards a limit cycle (1-torus) solution, pVS
2,1(lc). This coincide 

with a drastic change in the area which the corresponding trajectory 
explore in phase space projection (cf. in (η− , η+)-plane in Fig. 5). 
Therefore ηA only decreases slightly with further increasing sxz, a trend 
that remains unchanged through the smooth transition to oVS

2,1(lc). This 
decreasing characteristic in ηA with sxz is significant stronger for the 
alternative propagating solution pVA

2,1(lc) and their smooth transition 
towards oVA

2,1(lc). 

3.1.3. Phase Space with sxz 
In order to visualize the change and evolution in flow dynamics with 

variation in sxz, Fig. 5 presents the phase portrait of o[p]V(S,A) solutions 
for different values sxz over the (η+, η− ) plane. Only the solution pVS in 
absence of any magnetic field comes to lie on the diagonal η+ = η− line, 
i.e. degenerated limit cycle [35,37]. The distance from the phase por
traits to the diagonal line η+ = η− is a measure of asymmetry, in 
particular of the degree to which Z2 symmetry is broken. With increasing 
sxz the trajectories of the 2-torus solution, pVS

2,1, explore wider regions in 
phase space and move away (top left direction; color coded lines) from 
the diagonal line η+ = η− . By changing into a limit cycle solution 

Fig. 3. Bifurcation diagram and time evolution. Bifurcation scenarios with 
sxz. Shown is the total (time-averaged for time-dependent flow solutions) modal 
kinetic energy Ekin (corresponding flow states are indicated). Solid [open] 
symbols indicate time dependent [stationary] solutions. The inset illustrates 
corresponding variation of period time τ with sxz. Note, Ekin for symmetric 
(oVS

2,1, pVS
2,1) and asymmetric (oVA

2,1, pVA
2,1) flow states are identical. 

Fig. 4. Evolution of the asymmetry parameter ηA with sxz for different oscil
lating and propagating vortex structures. The vertical arrows indicate the 
transition scenario when one solution loses stability and the flow moves tran
sient towards another stable solution (see text for further details) (cf. Fig. 17 in 
[37] for pure transversal .magnetic field). 
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pVS
2,1(lc) at sxz ≈ 0.32 the global flow dynamics simplifies and the limit 

cycle in the (η+, η− ) plane continuously shrinks together. This behavior 
proceed throughout the smooth transition into oVS

2,1(lc), before ending in 
the stationary state 6 V2,1 (fixed point solution) at sxz ≈ 0.445. The 
alternating vortex solutions oVA

2,1(lc) and pVA
2,1(lc) only exist stable as limit 

cycle solution for here studied parameters. They feature the same 
behavior with approach to the onset/bifurcation point. Having reached 
the stationary state 6 V2,1 and further increasing sxz initially the distance 
to the diagonal line η+ = η− slightly increases, before it starts decreasing 
again. Thus for larger sxz the flow moves towards a more symmetric 
appearance again. 

The inset in Fig. 5 illustrates the corresponding two-dimensional 
Poincaré section (η− , Ekin) at η+ = − 900 (same color code is used as in 
(η+, η− ) plane). As mentioned before, being limit cycle solutions, cor
responding curves/trajectories appear as single point, while the 2-torus 
solution appear one dimension higher as circles in (η− ,Ekin). This char
acteristic is best visible for sxz = 0.3 short before the disappearing of the 
2-torus solution. See also movie movie_pVA21_sxz03.avi in SM. 

The gray colored curves in Fig. 5 on the other side of the diagonal line 
η+ = η− (right and down) illustrate the symmetry related solution, 
which appear for inverting the axial field direction (cf. Section 2.3), 
Hz→ − Hz), while maintaining the transversal one. 

In order to see the flow dynamics more clear, Fig. 6 shows the evo
lution of oVS,A

2,1(lc) and pVS,A
2,1(lc) in phase space projection and Poincaré 

section for sxz close to the onset (i.e. zoom in of Fig. 5). As discussed 
before, with decreasing sxz oVA

2,1(lc) (stable at onset) and oVS
2,1(lc) (un

stable at onset) bifurcate in the pitchfork bifurcation at sxz ≈ 0.445 
which can be identified in phase space by the change from a single point 
towards the presence of a limit cycle. Therefore the corresponding 
Poincaré section at (Ekin, η− ) at η+ = − 932 (Fig. 6(b)) illustrates a single 
point for the limit cycle solutions. With decreasing sxz, i.e. moving away 
from the onset, both flows smoothly change from oscillating to 

propagating states and the trajectories explore wider region in phase. 
During this, Ekin monotonously decrease for both, while the energy for 
asymmetric/alternative solutions is always larger than those for sym
metric ones. 

Worth to mention, that we detected the smooth transition from 
oscillation towards propagating vortices and vice versa to appear at 
sxz ≈ 0.41 independent of symmetric o[p]S2,1(lc) or alternating vortex so

lutions o[p]A2,1(lc). 
Fig. 7 illustrates the stationary solution 6 V2,1 at sxz = 0.45, close to 

the onset out of which either oVA
2,1(lc) (stable) and oVS

2,1(lc) (unstable) 
appear, respectively. Mode amplitudes 

⃒
⃒um,n

⃒
⃒ and radial flow u(r, θ)

(Fig. 7(b, e)) highlight the complexer mode spectra, in particular the 
stimulated m = 2 modes (due to transversal magnetic field, cf. vector 
plot [u(r, z),w(r, z)] for θ = 0 and θ = π/4 in Fig. 7(d)) and m = 1 modes 
(due to superposition of transversal and axial; i.e. oblique field). 

3.2. Flow structures and transition scenarios 

As discussed before only the asymmetric/alternating vortex solution 
oVA

2,1(lc) is stable at the onset sxz ≈ 0.445 and with decreasing sxz first 
undergoes a smooth transition into pVA

2,1(lc) before eventually losing it’s 
stability at sxz ≈ 0.33 where the flow dynamics transfer into the sym
metric vortex solution pVS

2,1(lc). Fig. 8 shed some light into this evolution 
and change in symmetry from different perspectives. The spacetime 
plots of u(θ, z) at mid-gap clearly indicates a change in the flow pattern. 

Fig. 5. Phase space projection for sxz. Phase portraits of oV(S,A)
2,1(lc) and pV(S,A)

2,1(lc,2T)
for field strength sxz as indicated on (η− , η+) plane. Points correspond to sta
tionary state 6 V2,1. Gray colored curves (below the diagonal line η+ = η− ) 
show the corresponding symmetry related solution, which appear for inverting 
the axial field direction (cf. Section 2.3). They are mirrored with respect to the 
diagonal line η+ = η− . (Dark [Light] gray identify asymmetric [symmetric] 
states.) See Fig. 6 for more details and evolution of oV(S,A)

2,1(lc) and pV(S,A)
2,1(lc) close to 

onset. The inset shows the corresponding Poincaré section (Ekin, η− ) at η+ =

− 900 (flow states are labeled). 
Fig. 6. As Fig. 5 but close to onset. (a) Phase portraits of limit cycle solutions, 
oVS

2,1(lc), of VA
2,1(lc) and pVS

2,1(lc), pVA
2,1(lc) close to onset and for field strength sxz 

on (η− , η+) and (b) corresponding Poincaré section (b) (Ekin, η− ) at η+ = − 932 
(cf gray horizontal line in (a)). Numbers in the figure identify the magnetic field 
strength sx as indicated. (η+ = − 932 is chosen based on the stationary state 6 
V2,1 for .sxz = 0.45.). 
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At the beginning of the transformation (pVA
2,1(lc), Fig. 8(a)) the black zero 

contour lines as indicator for the propagating vortices, appear alter
nating (about half period shifted) near the upper and lower lids. The plot 
illustrates a kind of elliptic pattern pointing towards the mid-height 
region and to the right (due to time evolution). Contrary at the end of 
the transition scenario for pVS

2,1(lc) (Fig. 8(c)) the pattern illustrates a 
symmetric appearance at top and bottom of these elongated elliptic 
regions. Corresponding time evolution of local measures η+ and η−

(Fig. 8(2b, 2c)) during the transition show the initial half period shift 
which becomes synchronized at the end η+ = η− . The always present 
difference in absolute values η± indicates the broken KHx

z symmetry for 
oblique fields. Although the time-averaged averaged modal kinetic en
ergy Ekin is basically identical for pVA

2,1(lc) and pVS
2,1(lc) (Fig. 3), the 

variation over one period τ is significant larger in the case of the sym
metric appearance pVS

2,1(lc) (8(2a))). In opposite manner the variation in 
η± over one period shrinks during the transition to be smaller in pVS

2,1(lc)

Fig. 7. Stationary 6 V2,1 flow structure for sxz = 0.45. Shown are (a) the azimuthal velocity v(θ, z) at mid-height [red (yellow)] color indicates positive (negative) 
flow], (b) the radial velocity u(θ, z) on an unrolled cylindrical surface in the annulus at mid-gap [red (yellow) color indicates in (out) flow], (c) isosurfaces of η =

±150 [red (dark gray) and yellow (light gray) colors correspond to positive and negative values, respectively, with zero specified as white] and (d) vector plot [u(r,
z),w(r, z)] (at left: θ = 0 and right: θ = π/4) of the radial and axial velocity components including color-coded azimuthal velocity v. (e) Mode amplitudes 

⃒
⃒um,n

⃒
⃒ of the 

radial velocity field u over the m − n-plane. The values are scaled regarding the maximum mode amplitude to be 1. [Analog visualizations are used in the following to 
characterize other flow structures in the paper.]. 

Fig. 8. Transition from pVA
2,1(lc) into pVS

2,1(lc) at sxz = 0.325. (1) Space–time plot of u(θ, z) at radial position r = ri +d/2 shown for different times during the 
transition: (a) 0⩽t⩽0.5, (b) 0.5⩽t⩽13.5, and (c) 13.5⩽t⩽14. Red (dark gray) and yellow (light gray) correspond to positive and negative values. (2) Quantities of time 
series of (a) Ekin, (b) η± and (c) phase portrait (η− , η+) illustrating the corresponding evolution of trajectories from pVa

2,1(lc) into pVss
2,1(lc). 
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compared to pVA
2,1(lc) (Fig. 8(2b)). In the similar manner the phase 

portrait (η+, η− ) elucidate the evolution from the asymmetric vortex 
solution pVA

2,1(lc), towards the symmetric vortex solution pVS
2,1(lc). The 

fact that the trajectories of both, pVA
2,1(lc) and pVS

2,1(lc), are far away from 
the diagonal line with η+ = η− is a further indication for the asymmetric 
characteristic with respect to classical Z2 symmetry. 

For a direct comparison of the different types of flow states with 
either symmetric or alternative motion in upper and lower half of the 
cylinder, Figs. 9 and 10 show both oscillating solutions at sxz = 0.0425, 
while Figs. 11 and 12 present the same for propagating states at sxz = 0.4 
after the smooth transition. 

In general, 3D plots of the azimuthal vorticity, η, and the radial ve
locity u(r, θ) at cylinder mid-gap indicate the either symmetric motion 
(from lids towards mid-height) of vortices for oVS

2,1(lc) [pVS
2,1(lc)] or the 

alternative appearance and motion of these vortices for oVA
2,1(lc)

[pVA
2,1(lc)] (Fig. 9 [11]). For all flow states, the dominant stimulated 

modes, i.e. m = 2 (due to the symmetry breaking transverse magnetic 
field) and m = 1 (due to superposition of axial and transversal magnetic 
field are best visible in u(r, θ) (cf. stationary case for 6 V2,1 presented in 

Fig. 7). For more details and better impression regarding the dynamics 
and evolution over one period see corresponding movies mov
ie_pVS21_sx0425.avi, movie_pVA21_sx0425.avi, movie_pVS21_sx04.avi, 
and movie_pVA21_sx04.avi in SM. In case of the symmetric solutions, 
oVS

2,1(lc) and pVS
2,1(lc), respectively, the vortices appear to have the same 

strength/amplitude (vortex size) in upper and lower system half. In 
contrast for the alternating solutions, oVA

2,1(lc) and pVA
2,1(lc), the strength 

of the vortices in upper and lower system half is different. The propa
gating vortices are larger (cf. u(r, θ) in Figs. 9 and 11). 

Although the averaged kinetic energy Ekin for oVS
2,1(lc) [pVS

2,1(lc)] and 
oVA

2,1(lc) [pVA
2,1(lc)] are virtually indistinguishable and fall together the 

corresponding period times τ (and frequencies ω) are slightly different 
(inset in Fig. 3) due to variation in annihilation process. Corresponding 
PSDs and time evolutions of Ekin and η± highlight the same frequencies 
(Figs. 10(1,2) and 12(1, 2)). However, the PSD of Ekin for both asym
metric solutions, oVA

2,1(lc) (Fig. 10(1b)) and pVA
2,1(lc) (Fig. 12(1b)), high

lights the double frequency 2ω (strongest/largest peak), corresponding 
to half a period τ/2 indicating one process of vortex generation, motion 
and annihilation, either in upper or lower system half. The spacetime 

Fig. 9. Flow visualizations of oscillating flow structures oVS
2,1(lc) and oVA

2,1(lc) at sxz = 0.425. Comparison of (1) oVS
2,1(lc) with period time τ ≈ 0.148 (ω ≈ 6.739) 

and (2) oVA
2,1(lc) with period time τ ≈ 0.150 (ω ≈ 6.662). Shown are over one period τ at instants of time (a) t = 0, (b) t = τ/4, (c) t = τ/2, and (d) t = 3τ/4. For each 

time step are shown (clockwise) isosurfaces of η (isolevel shown at η = ±150). Vector plots [u(r, z),w(r, z)] of the radial and axial velocity component (θ = 0), where 
the color-coded azimuthal velocity field v is also shown. Radial velocity u(θ, z) on an unrolled cylindrical surface in the annulus at mid-gap. Red (dark gray) and 
yellow (light gray) colors correspond to positive and negative values, respectively, with zero specified as white. [The same legends for flow visualization are used for 
all subsequent unsteady flows.] See also movies movie_oVS21_sx0425.avi and movie_oVA21_sx0425.avi in SM. 
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plots u(z, t) at (r = d/2) and η(z, t) at (r = ri), show overall similar dy
namics, which is more pronounced in case of the propagating solutions 
pVS

2,1(lc) and pVA
2,1(lc), respectively. 

It is worth to mention, that the general dynamics for oscillating and 
propagating vortices under oblique magnetic field is moved towards the 
inner cylinder in comparison to the dynamics under pure axial or pure 
transversal magnetic field. 

The difference in time evolution of η± for pVS
2,1 (for lc and T2) can be 

seen in corresponding time series (insets in Fig. 13) for different sxz as 
indicated. Starting in the symmetric solution pVS in absence of any 

magnetic field time series of η+ and η− are identical and thus fall 
together (Fig. 13(1)). With increasing sxz the time series separate indi
cating the loss of ZHx

2 symmetry. Aside the separation in absolute values, 
both time series are slightly shifted against each other, although the 
period τ itself basically remain the same for η± (see Fig. 13(6)). The 
‘peaks’ in time series η± are slightly displaces. This results from the 
additional stimulated m = 1 modes, which destroy the symmetric 
appearance as they also do result in the different shape/dynamics η±. 

The PSDs of pVS
2,1 in Fig. 13(1) shows the limit cycle topology having 

a single characteristic frequency. With finite value sxz ∕= 0 immediately 

Fig. 10. Comparison of oscillating flow structures oVS
2,1(lc) and oVA

2,1(lc) at sxz = 0.425. Shown are PSD of (1) Ekin, (2) η+ (including insets illustrating corresponding 
time series) and spacetime plots of (3) u(z, t) at (r = d/2) and (4) η(z, t) at (r = ri) of (a) oVS

2,1(lc) and (b) oVA
2,1(lc) at sxz = 0.425. See also movies movie_oVS21_sx0425. 

avi and movie_oVA21_sx0425.avi in SM. 
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a second incommensurable frequency appears, which renders the flow to 
live on a 2-torus invariant manifold. As the global dynamics only 
smoothly change this frequency first appears in the PSD of local quan
tities η± (Fig. 13(2b)) and becomes more and more pronounced for 
larger values sxz. This second frequency, slightly changing with sxz, ap
pears to be about 1/3 of the dominant frequency ω. 

This second frequency becomes more and more pronounced and 
present in PSDs of both, global quantity Ekin and local quantity η±
(Fig. 13(2 − 5)) before it finally disappears in the frequency locking at 
sxz ≈ 0.33 and therefore the flow changes back to be a limit cycle so
lution having only one single characteristic frequency (Fig. 13(6)). 

3.3. (sx, sz) phase diagram 

We will conclude our studies and investigations with the (sx,sz) phase 
diagram (Fig. 14) which covers the (sx,sz) parameter range investigated 
in both, the current and first part [37] investigating propagating vortex 
solutions. The bifurcation diagrams of Fig. 3 were obtained along the 
gray diagonal line η+ = η− . Corresponding bifurcation diagrams 
covering the scenario for either pure axial and pure transversal magnetic 
field were presented in Figs. 3 and 8 in [37] (i.e. axis in Fig. 14). 

The blue line denotes the pitchfork bifurcation at which oVS
2,1(lc)

(unstable) and oVA
2,1(lc) [oVA∗

2,1(lc)] (stable) appear simultaneously out of 
the stationary solution 6 V2,1. Note, that the basic state CCF2,1 (cf. Fig. 3) 

is out of the here presented parameter range. The table in the caption of 
Fig. 14 indicates the different regions with stable (s), unstable (u) and 
non existing (-) flow states. The lower boundaries of regions B and C 
indicate the smooth transition from the oscillating vortex solutions, 
oVS

2,1(lc) and oVA
2,1(lc), towards their propagating counterparts, pVS

2,1(lc)

and pVA
2,1(lc), respectively. 

The structure of the phase diagram in Fig. 14 can be summarized as 
follows: In region F1,2 only the symmetric propagating vortices exist as 
stable solution. This is pVS

2,1(2T) in F1 which changes to pVS
2,1(lc) in F2. 

While in region E, both, pVS
2,1(lc) and pVA

2,1(lc), are bistable coexisting, this 
change to the only stable solution pVA

2,1(lc) in region D. Increasing the 
magnetic field strength, sx and/or sz from region E into region C, either 
pVS

2,1(lc) and pVA
2,1(lc) undergo smooth transitions towards oVS

2,1(lc) and 
oVA

2,1(lc), respectively. Crossing from region C into region B, oVS
2,1(lc) loses 

stability with only oVA
2,1(lc) remaining as stable existing solution. In re

gion A the stationary 6 V2,1 solution is present, which appears out of the 
basic state CCF2,1 at the larger control parameters sx, sz (cf. Fig. 3). Re
gion G indicates the existence of the modulated solution pVAm

2,1, which 
was discussed in more detail in [37]. 

The fact that the pitchfork bifurcation for pure axial field configu
ration appears at smaller (absolute value) field strength sz ≈ 0.56 in 
comparison to pure transversal field configuration with sx ≈ 0.775 

Fig. 11. Flow visualizations of propagating flow structures pVS
2,1(lc) and pVA

2,1(lc) at sxz = 0.4. As Fig. 9 but at sxz = 0.4 and comparison of (1) pVS
2,1(lc) with period time 

τ ≈ 0.152 (ω ≈ 6.588) and (2) pVA
2,1(lc) with period time τ ≈ 0.154 (ω ≈ 6.515). See also movies movie_oVS21_sx04.avi and movie_oVA21_sx04.avi in SM. 
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highlights the well known larger stabilization effect of pure axial mag
netic fields in comparison to pure transversal magnetic fields 
[35,8,9,37]. 

4. Discussion and conclusion 

This paper is the second of two parts dealing with propagating 
vortices (pVs) in ferrofluidic Couette flow under influence of external 
magnetic field. While the first part dealt with pure magnetic fields, 
either pure axial or pure transversal (symmetry breaking) orientated, 
the current manuscript investigates the superposition of both axial and 
transversal, i.e. oblique magnetic fields. With changing (particular 

decreasing) the magnetic field strength sx and/or sz symmetric solutions 
(oVS

2,1(lc)) as well as asymmetric ones (oVA∗
2,1(lc)) appear in a symmetry 

breaking pitchfork bifurcation. Due to any transversal, symmetry 
breaking component all flow states are inherently 3D [7] and in com
bination with the axial field, all flow solutions have a finite m = 1 mode 
under oblique field configuration. 

Similar to pure transversal magnetic field, close to onset only the 
asymmetric solutions appear stable, while symmetric ones are unstable 
[37]. However, for oblique field configuration the initial appearing so
lutions are only oscillating and non-propagating flow structures. This 
holds for both, symmetric and asymmetric ones (oVS

2,1(lc), oVA
2,1(lc)) 

Fig. 12. Comparison of propagating flow structures pVS
2,1(lc) and pVA

2,1(lc) at sxz = 0.4. As Fig. 10 but for pVS
2,1(lc) and pVA

2,1(lc) at sxz = 0.4. See also movies mov
ie_pVS21_sx04.avi and movie_pVA21_sx04.avi in SM. 
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equally. With decreasing the magnetic field strength these oscillating 
solutions undergo a smooth transition into propagating vortex states 
(pVS

2,1(lc), pVA
2,1(lc)). Although symmetric and asymmetric states being 

indistinguishable in the time-averaged modal kinetic energy, they have 
an observable difference in their corresponding period times. This time 
is larger for the asymmetric states resulting from complexer annihilation 
processes in the central defect region based on the alternating 

annihilation of vortices. 
In contrast to all former studied and described pVs in literature, 

existing as periodic states and therefore characterized as limit cycle 
solutions [37,10,35], the pVs under oblique magnetic fields are found to 
be periodic or only quasi-periodic depending on different system pa
rameters. Therefore they exist on either one dimensional (as all former 
known) or two dimensional invariant manifolds, which renders them to 
be limit cycle (1-torus) pVS

2,1(lc) or 2-tori solutions pVS
2,1(2T). While being 

intrinsically 2-tori solutions changing the field strength (sx,sz) as control 
parameter we detected frequency locking resulting in simpler limit cycle 
solutions (1-torus) again. 

Worth to mention, although this study for different external mag
netic fields, shed further light on the parameter range in which pVs 
appear stable as well as unstable and their underlying topology, the huge 
number of control parameters in TCS still leaves many open gaps which 
should be motivation for future exploration. In particular we hope to 
motivate experimental studies as the here considered parameters are 
very well achievable. Moreover, the here detected underlying topology 
of pV states to exist either as limit cycle (1-torus) and 2-torus solutions in 
presence of oblique magnetic fields may be only the ‘top of the iceberg’ 
and further experimental and numerical studies will have to be under
taken in this field. 
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Fig. 13. Power spectral densities (PSDs) of (a) Ekin and (b) η+ for different 
pVS

2,1(2T). (1) In absence of any magnetic field (cf. Figs. 1 and 4(a) in [37]) with 
period time τ ≈ 0.173 and corresponding frequency ω ≈ 5.779. (2) For sxz =

0.05 with period time τ ≈ 0.173 and corresponding frequency ω ≈ 5.779. (3)
For sxz = 0.2 with period time τ ≈ 0.169 and corresponding frequency 
ω ≈ 5.926. (4) For sxz = 0.25 with period time τ ≈ 0.167 and corresponding 
frequency ω ≈ 5.999. (5) For sxz = 0.3 with period time τ ≈ 0.163 and corre
sponding frequency ω ≈ 6.147. (6) For pVS

2,1(lc) sxz = 0.35 with period time τ ≈

0.319 and corresponding frequency ω ≈ 3.132. Insets show time series of Ekin, 
η+ [red], η− [black]. For pVS

2,1(2T) at sx = 0.3 see also movie movie_
pVA21_sxz03.avi in SM. 

Fig. 14. Phase diagram for oV and pV solutions in (sx, sz)-plane. The diagonal 
sx = sz indicate the parameter range of the bifurcation diagrams of Fig. 3. 
Corresponding bifurcation diagrams for either pure axial and pure transversal 
magnetic fields have been presented in the first part of this study [37] in Figs. 3 
and 8, respectively. 
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