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We present numerical as well as experimental results of axisymmetric, axially
propagating vortices appearing in counter-rotating Taylor–Couette flow below the
centrifugal instability threshold of circular Couette flow without additional externally
imposed forces. These propagating vortices are periodically generated by the shear
flow near the Ekman cells that are induced by the non-rotating end walls. These
axisymmetric vortices propagate into the bulk towards mid-height, where they get
annihilated by rotating, non-propagating defects. These propagating structures appear
via a supercritical Hopf bifurcation from axisymmetric, steady vortices, which have
been discovered recently in centrifugally stable counter-rotating Taylor–Couette flow
(Abshagen et al., Phys. Fluids, vol. 22, 2010, 021702). In the nonlinear regime of the
Hopf bifurcation, contributions of non-axisymmetric modes also appear.
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1. Introduction
Steady and time-dependent solutions of a fluid dynamical system provide

the building blocks underlying the complexity in disordered or turbulent flows
(Guckenheimer & Holmes 1983; Cross & Hohenberg 1993). In certain classes of
hydrodynamically unstable systems, the structure of solutions and the organizing
principles of complexity can be unfolded in a bifurcation analysis, such as
in Rayleigh–Bénard convection (Bodenschatz, Pesch & Ahlers 2000) and in
Taylor–Couette flow. The Taylor–Couette system consists of a viscous fluid between
two independently rotating cylinders, and is one of the most famous references for
pattern-forming systems. Numerous structures with different topology are known to
appear in this system and have been studied extensively during the past decades.
Experiments as well as numerical simulations (Di Prima & Swinney 1981; Andereck,
Liu & Swinney 1986; Langford et al. 1988; Tagg 1994; Hoffmann & Lücke 2000;
Marques & Lopez 2000; Lopez & Marques 2002; Hoffmann, Lücke & Pinter 2005;
Heise et al. 2008; Hoffmann et al. 2009; Altmeyer & Hoffmann 2010) have elucidated
various solutions and bifurcation scenarios.
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The simple geometries of the Taylor–Couette system leave the basic laminar
flow invariant under certain symmetries, which determine the bifurcation behaviour
(Golubitsky, Stewart & Schaeffer 1988; Cliffe, Mullin & Schaeffer 2012). Under
axially periodic boundary conditions (PBCs) or in an infinite Taylor–Couette system,
rotationally symmetric Taylor vortex flow (TVF) with toroidally closed vortices and
spiral vortex flow (SPI; Tagg 1994; Hoffmann & Lücke 2000) with open, helical
vortices bifurcating out of the basic state, i.e. circular Couette flow (CCF; Tagg 1994)
can occur. For counter-rotating cylinders, non-axisymmetric spirals also occur from a
centrifugal instability via a symmetry-breaking Hopf bifurcation. They are symmetry-
degenerated in oppositely travelling, right-winding (R-SPI) or left-winding (L-SPI)
spirals, which are mirror images of each other (Hoffmann & Lücke 2000; Hoffmann,
Lücke & Pinter 2004). In the centrifugally stable regime between counter-rotating
cylinders, even turbulent flow can appear directly out of the basic laminar flow as a
consequence of a subcritical transition (Coles 1965; Borrero-Echeverry, Schatz & Tagg
2010).

In experimental realizations of Taylor–Couette flow, the viscous fluid is often
enclosed by non-rotating axial end walls (e.g. non-rotating lids) at top and bottom,
and therefore the axial translation invariance is broken. Furthermore, these end walls
generate disturbances at any driving rate (Benjamin 1978; Edwards, Beane & Varma
1991; Czarny et al. 2003; Altmeyer et al. 2010), generating axisymmetric, secondary
circulation. These so-called Ekman vortices overlay and deform the CCF and create
a new stationary, rotationally symmetric basic flow. This state always contributes to
the axial Fourier spectra of other flow states (stronger in short systems), and the
bifurcation behaviour of Taylor vortices and spirals is significantly altered (Benjamin
1978; Lorenzen, Pfister & Mullin 1983; Edwards et al. 1991; Tagg 1994; Lopez,
Marquez & Shen 2000; Czarny et al. 2003; Altmeyer et al. 2010; Cliffe et al. 2012).

In enclosed Taylor–Couette flow, a large variety of solutions have been discovered in
the centrifugally stable regime. Localized and global spiral vortices have been found to
bifurcate via a supercritical Hopf bifurcation out of the basic flow in counter-rotating
flows (Avila et al. 2008; Heise et al. 2013) as well as in co-rotating flows (Heise et al.
2008) at critical Reynolds numbers and below that of the centrifugal instability of
CCF, respectively. Axisymmetric cellular states, i.e. toroidally closed non-propagating
n-vortex (nV) states with different numbers n of cells, have been observed in the
centrifugally stable regime of counter-rotating Taylor–Couette flow. While these steady
states appear smoothly in the basic flow, they give rise to a considerable multiplicity of
states. This has been attributed to the homoclinic snaking mechanism (Abshagen et al.
2010).

In this paper, we report numerical and experimental results of axisymmetric
propagating vortices (pV) that bifurcate in a supercritical Hopf bifurcation out of
the stationary cellular (nV) states (Abshagen et al. 2010). The critical points of pV
are located in the centrifugally stable regime of counter-rotating Taylor–Couette flow.
In contrast to propagating spiral vortices, which are non-axisymmetric rotating waves,
these axisymmetric propagating vortices are time-dependent in any rotating frame and
reflection symmetry is revealed.

2. System
In our Taylor–Couette system, a Newtonian fluid of kinematic viscosity ν fills the

annular gap between two concentric, independently rotating cylinders (inner, outer
radii r1,2; angular velocities Ω1,2). Throughout this paper, we consider a fixed radius
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ratio of η = r1/r2 = 0.5. The system length Γ is given in units of the gap width
d = r2 − r1, and rigid, non-rotating lids close the gap and serve as end walls in the
axial direction.

Owing to the geometry of the system, cylindrical coordinates r, ϕ, z are used to
decompose the velocity field into a radial component u, an azimuthal one v, and an
axial one w:

u= u er + v eϕ + w ez. (2.1)

Lengths are scaled by the gap width d = r2 − r1, multiplied by the radial diffusion
time d2/ν for momentum across the gap, and the pressure is scaled p by ρν2/d2. The
Reynolds numbers

R1 = r1Ω1d/ν, R2 = r2Ω2d/ν, (2.2)

enter into the boundary conditions for v: here R1 and R2 are just the reduced azimuthal
velocities of the fluid at the cylinder surfaces.

2.1. Numerical methods

The system is governed by the Navier–Stokes equations

∂tu=∇2u− (u ·∇)u−∇p. (2.3)

For numerical simulations, we used a G1D3 code developed by Hoffmann and
extensively described in Hoffmann et al. (2004). It is a combination of a finite
differences method in time, radial and axial directions, and a Galerkin expansion
in ϕ direction, with a decomposition

f (r, ϕ, z, t)=
∑

m

fm(r, z, t) eimϕ, (2.4)

where f denotes one of {u, v,w, p}. As in Hoffmann et al. (2004), we choose a
sufficiently large Fourier mode space with mmax = 8 for an adequate accuracy.

For the flows investigated here, a truncation of the Fourier expansion at mmax = 8
has been verified to properly resolve the anharmonicities in the fields. Deeper
investigations have shown that the (cylindrical) system always prefers structures
with smaller azimuthal wavenumbers m. This also holds for the subcritical case,
where m 6= 0 modes (originating from fluctuations) are excited by m = 0 modes
(originating from the end walls) through nonlinearities (cf. Altmeyer et al. (2010)
for the interaction of m= 0 and m 6= 0 structures).

For code validation, we compared travelling and non-travelling solutions within a
wide range of wavenumbers with experiments (e.g. Heise et al. 2008) and previous
numerical results. We also investigated how the nonlinear solutions change when
varying mmax and/or the grid spacing. From these analyses, we conservatively conclude
that typical spiral frequencies have an error of less than ∼0.2 %, and that typical
velocity field amplitudes of non-propagating vortices can be off by significantly less
than 3–4 %. Time steps were always well below the von Neumann stability criterion
and by more than a factor of three below the Courant–Friedrichs–Lewy criterion. We
found an error depending on the variation of time steps to lie below 1 %. Higher
radial and axial resolutions nor higher maximal azimuthal mode numbers lead to a
significantly improved accuracy of the observed structures.
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For diagnostic purposes, we also calculate the complex mode amplitudes fm,n(r, t)
representing the Fourier decomposition in the axial direction

fm(r, z, t)=
∑

n

fm,n(r, t) einkz (2.5)

of numerically obtained fields fm(r, z, t). Besides this, we also used a shooting method
in order to calculate linear stability thresholds (Altmeyer, Hoffmann & Lücke 2011).

For flow visualization, it was shown that the azimuthal vorticity component

Ωϕ = ∂zu− ∂rw (2.6)

is an adequate and convenient means to identify and recognize the geometry of
complex vortex structures via isovorticity surfaces (Hoffmann et al. 2009). The tubes
obtained in this way represent the topology of vortex centres and thus determine the
most important properties of the structures, e.g. symmetry and connectivity. Moreover,
they describe the strength of the vortices and give a rough impression of the vortex
deformation. Light grey (green online) and dark grey (red online) shading of Ωϕ

corresponds to vortex rotation in the negative and positive mathematical directions,
respectively, while looking towards the positive azimuthal direction.

2.2. Experimental set-up
In our experiments, the temperature of the fluid is thermostatically controlled at
24.00 ± 0.01 ◦C. The inner cylinder of our apparatus is machined from stainless
steel having a radius of r1 = 12.50 ± 0.01 mm, while the outer cylinder is made
from optically polished glass with a radius of r2 = 25.00 ± 0.01 mm. At the top
and the bottom, the fluid is confined by solid end walls, and the tilt of each
wall is better than 0.03 mm at the outer diameter. The rotation of the cylinders
is controlled by a phase-locked loop (PLL) unit achieving an average accuracy of
1f /f ∝ 10−4 in the short term and 1f /f ∝ 10−7 in the long term. As a working
fluid within the gap between the two concentric cylinders, a silicone oil with a
kinematic viscosity ν = 9.6 ± 0.1 cSt is used. The uncertainty of ±0.1 cSt refers
to the measurement of the absolute value of the kinematic viscosity. The accuracy
of ν during a measurement is primarily determined by the temperature variation
of the fluid, which is thermostatically controlled to 24.00 ± 0.01 ◦C. This yields
1ν = (∂ν/∂T)|24.00 ◦C1T ≈ 0.0025 cSt. Though the uncertainty in the absolute value
of ν introduces an uncertainty 1Rabs/R ∝ 10−2 in the absolute value of the Reynolds
number R, the variation in the Reynolds number with time is within 1R/R ∝ 10−4

during a measurement. This variation determines the resolution in Reynolds numbers
that is achieved in the experiment.

In addition to flow visualization, we utilize laser Doppler velocimetry (LDV) for
measurements of the local radial and axial velocity of the flow. In this work, two
different LDV measurement techniques are used. The first method measures the
velocity component u or w at a fixed position (r, ϕ, z). The second is an axial scan
of u or w, moving the LDV with constant velocity in z at fixed r and ϕ. In order to
study the complete spatio-temporal behaviour of the flow, sequential axial scans are
performed for u and w.

3. Results
3.1. Stationary vortices

In figure 1, we use numerically determined isosurfaces of the azimuthal vorticity
Ωϕ = ±60 in order to visualize the ‘classical’ Ekman-dominated basic two-vortex
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(a) (b)

FIGURE 1. (Colour online) Isosurfaces of the azimuthal vorticity Ωϕ = ±60 of numerically
simulated flows for two different subcritical nV states: (a) subcritical 2V state with
two Ekman vortices covering the whole system height; (b) another subcritical state (6V)
consisting of two Ekman vortices and four small vortices near mid-height located close to the
inner cylinder. The grey shades (colours online) for this and all subsequent figures showing
isosurfaces are: dark grey (red online), Ωϕ = +60; light grey (green online), Ωϕ = −60.
Control parameters are R2 =−300 and Γ = 4 for both simulations; and R1 = 110 in panel (a)
and R1 = 150 in panel (b).

state (2V) in panel (a) as well as a six-vortex state (6V) in panel (b) – cf. Heise
et al. (2013). The two strong Ekman cells in figure 1(a) are located near the lids but
dominate the flow in the whole gap, which is indicated by the sign of Ωϕ in the slice
(dark grey/red online corresponds to positive, light grey/green online corresponds to
negative Ωϕ). In the 6V state in figure 1(b), on the other hand, four extra vortices
occur in addition to the Ekman vortices. They are symmetrically arranged around
mid-height and mainly located close to the inner cylinder. The vortex number n and
the axial wavelength of all these toroidally closed vortices depend on the axial length
Γ and the aspect ratio η of the system (see Abshagen et al. (2010) for details).

3.2. Propagating vortices
In general, propagating states like spirals are quite common in co-rotating as well

as in counter-rotating Taylor–Couette flow. However, the subcritical occurrence of
the propagating vortices observed here, on the one hand, and the toroidally closed
structure, on the other, makes them very interesting. Note that toroidally closed,
propagating vortices have not been observed in a closed Taylor–Couette system
(without externally imposed additional forces like magnetic fields or axial pressure
gradients) so far. These propagating vortex (pV) states emerge out of different
subcritical, stationary nV solutions, which are discussed above and shown in figure 1.

As an example, figure 2 depicts snapshots of a pV state. The sequence covers one
period T and shows that new vortices are generated at the defects near the lids and
are annihilated in a pair of defects near mid-height. The spatio-temporal dynamics of
vortex generation and annihilation in this pV state can easily be followed in the sketch
of figure 2(b), which describes the vortex generation, propagation and annihilation in
the gap (we omitted the Ekman cells; left (right) edge correspond to inner (outer)
cylinder).

We start our discussion at t1 = 0 (1) in figure 2(b), when the pV state exhibits six
vortices, i.e. two pairs of vortices in the bulk as well as two Ekman vortices (not
shown in panel (b)) near the lids. In (2), two new vortex pairs (labelled 5/6 and 8/7),
located between the bulk vortices (1/2 and 4/3) and the respective Ekman vortices,



Axisymmetric vortices in centrifugally stable Taylor–Couette flow 463

1

2

3

4

1

2

3

4

5
6

7
8 8

8

87
7

4
4

3
3 3

1 1

2
2 2

5
5

56
6

(4) (5)(1) (2) (3)

(b)

(a)

FIGURE 2. (Colour online) (a) Isosurfaces of the azimuthal vorticity (Ωϕ = ±60) of
numerically simulated flow states covering one characteristic period of a pV state for
five different time positions t1 = 0, t2 = 0.041, t3 = 0.072, t4 = 0.133 and t5 = 0.195.
(b) Schematic illustration for the generation and annihilation of vortices in the gap between
the inner (left edge) and outer (right edge) cylinder. The vortices are labelled by 1 to 8. Note
that we removed the Ekman vortices for better visibility. Control parameters are R1 = 165,
R2 =−300 and Γ = 4.

appear quite close to the inner cylinder. As a result of the larger number of vortices
in the bulk, both vortex pairs (1/2 and 4/3) move together. The new vortex pairs (5/6
and 8/7) keep growing in axial and radial directions such that, in (3), all bulk vortices
have nearly the same extension. Now, in (4), the inner vortex pairs (6/1 and 7/4) in
each localized vortex domain become smaller to the benefit of the respective boundary
vortices (5/2 and 8/3) and finally disappear in (5). The last state (5) after a complete
period is again a pV state exhibiting six vortices, which is the initial state (1) of the
periodic process. The period of vortex generation and annihilation here is T ≈ 0.19
corresponding to a frequency f ≈ 5.05. We found that this frequency does not vary
significantly with R1 or R2.

Additionally, figure 3 shows the zeros of the radial flow field in a space–time
plot for a Γ = 4 system in panel (a) as well as a longer Γ = 8-system in panel
(b) and exhibits the propagation and dynamics of the pV state. The zeros of one
velocity component correspond to defects, which are the origin of phase generation or
annihilation.
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FIGURE 3. Space–time plots of the radial velocity u = 0 of numerically obtained pV states
observed for two different axial lengths: (a) Γ = 4 and (b) Γ = 8. Further control parameters
are R1 = 165, R2 =−300, r = r1 + 0.5 in panel (a), and R1 = 225, R2 =−600, r = r1 + 0.25
in panel (b).

Figures 2 and 3 exhibit two interesting aspects, which we want to point out: (i) the
pV state consists of toroidally closed vortices with a dominant m = 0 azimuthal mode
contribution; and (ii) the inner vortices (2, 3) lie between both vortex-annihilating
defects and are therefore only affected as they periodically change their axial
wavenumber.

3.3. Bifurcation scenario
In the following the transition from a stationary vortex nV flow state to a

propagating pV state is discussed in detail. Therefore, we experimentally measured
the axial velocity w by LDV at a fixed radial (r = r1 + 0.08) and azimuthal ϕ
position using axial scans along z ∈ [0.15, 3.85]. In order to measure the bifurcation,
we quasi-statically increased R1 after each axial scan at a fixed R2. We found the
spatio-temporal average 〈w〉2z,t of w(r, ϕ, t) at the fixed radial and azimuthal position
to provide a good measure for the transition points between non-propagating vortices
(2V and 6V). In addition to that, we used the bandpass filtering method to distinguish
between non-propagating vortices and propagating ones (see Heise et al. (2008) for
details). In figure 4 the transitions from 2V to 6V and from 6V to pV are analysed
by this method. Below the onset of 6V, 〈w〉2z,t (•) is found to increase linearly. The
onset of cellular states is determined from the deviation from this linear growth by
a nonlinear fitting method, as described in Abshagen et al. (2010). Based on this
estimation, we determined the onset of 6V at R1,c = 150.5 (vertical dashed line).

In order to estimate the critical value for the transition from 6V to pV, two further
curves are depicted in figure 4. The wnV curve (©) only considers non-propagating
velocity components, whereas the wpV curve (�) illustrates the propagating ones.
One can see that the pitch of the wnV curve is reduced as the wpV curve increases
significantly at R1,c = 161.5 (vertical dotted line). For the wpV curve, 〈w〉2z,t increases
linearly for R1 > R1,c as expected for a supercritical Hopf bifurcation.

In figure 5 two numerically determined bifurcation scenarios are depicted. The
bifurcation diagram for rigid boundary conditions (RBCs; Γ = 4) in panel (a) and
for axially periodic boundary conditions (PBCs) in panel (b). First, focusing on the
RBC case, the stable 2V state in region A undergoes a smooth transition to a 6V
state (region B), which becomes unstable against a pV state remaining stable all over
the parameter regions C and C′. In C′, pV and TVF (with eight vortices) coexist
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FIGURE 4. Experimentally determined bifurcation diagram measured at R2 = −380 and
Γ = 4, where the spatial mean of the squared axial velocity 〈w〉2z,t and additionally the
bandpass filtered curves of the non-propagating vortices wnV as well as the propagating
vortices wpV are plotted versus R1. The vertical dashed and dotted lines indicate the critical
stability boundaries of the flow states 2V, 6V and pV as indicated.

as bistable solutions. The latter undergoes a transition to the pV state at onset. All
structures have significantly different wavenumbers k (mainly due to the variable
number of vortices), which remain more or less constant within the respective regions
A to C′. For the Γ = 4 system, we found k = 3.9 for 6V (six vortices), k = 7.2 for
TVF (eight vortices) and k = 5.7 for pV (six to 10 vortices).

For comparison, figure 5(b) elucidates the bifurcation scenario for an axially
periodic system by fixing the periodicity length to the respective wavenumber of
the corresponding structure in panel (a). For the SPI state, which does not exist in the
RBC system, we used the critical wavenumber k = kc of m= 1 solutions.

Owing to the absence of Ekman boundary layers as a driving force under PBC, no
subcritical non-trivial structures are found at all. Even the supercritical pV state as
observed in figure 5(a) is missing here. On the other hand, stable spirals occur in a
very small region near onset, and the Taylor vortices bifurcate as an unstable solution
to the benefit of stable wavy Taylor vortices (wTVF) (Hoffmann et al. 2009; Altmeyer
et al. 2010), which are described by their significant m= 0 and m=±1 modes.

3.4. Phase diagram
Figure 6 exhibits a combined experimentally measured and numerically simulated
phase diagram for different subcritically and supercritically appearing vortex states in
the counter-rotating regime. The dotted dark grey (blue online) and light grey (orange
online) curves denote the well-known (critical) linear stability threshold for m= 0 and
m = 1, respectively, distinguishing the supercritical from the subcritical CCF regime.
In this figure, the experimentally (numerically) determined values are denoted by filled
(open) symbols.

For small R1, one only observes the 2V state for all R2 values depicted here.
Depending on R2, it is replaced by either 4V or 6V states while increasing R1. The
solid black line with circles (◦, •) characterizes the smooth transition from 2V to nV
states (n = 4, 6) (see also Abshagen et al. (2010) for further details). The dashed line
with diamonds (♦,�) gives the bifurcation threshold for pV states out of nV states.
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FIGURE 5. (Colour online) Numerically obtained bifurcation diagrams measured at R2 =−300 and Γ = 4 of different subcritical and supercritical states 2V, 6V, pV, TVF, wTVF and
SPI for (a) rigid boundary conditions (thick lines) as well as for (b) axially periodic boundary
conditions (thin lines). The axial wavenumbers k of all structures are given as indices. Solid
(dashed) lines with filled (open) symbols refer to stable (unstable) solutions. Shown are the
dominant axial Fourier amplitudes |um,k| of the azimuthal modes |um(z)| (see equation (2.5))
of the radial flow u(r, ϕ, z, t) at mid-gap and z = 1. In C and C′, we chose the temporal
maximum umax of u(r, ϕ, z, t) at a suitable fixed position (r = r1 + 0.5, ϕ = const., z = 1) for
the pV state. Labels m> 0 and m< 0 refer to left- and right-winding azimuthal helical modes,
respectively. The small dark grey (blue online) and light grey (orange online) arrows below
the abscissa in panel (b) indicate the linear stability threshold of the (m = 0, k = 7.2) and
(m = 1, k = kc) solutions, respectively. Different regions are labelled by A (2V state), B (6V
state), C (pV state) and C′ (bistable pV and TVF state).

As discussed above, these pV states can occur supercritically out of nV states. For
stronger counter-rotation, on the other hand, the nV regime (n = 4, 6) becomes more
and more narrow but does not disappear completely in the regime depicted in figure 6.

3.5. Non-axisymmetric flow states
Non-axisymmetric flow states are also observed in the vicinity of the flow states
presented above. In figure 7, a numerical simulation of such a flow state is illustrated
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FIGURE 6. (Colour online) Numerically and experimentally obtained phase diagram in the
R1–R2 plane including the different onsets of nV states (4V and 6V) as well as pV states for
Γ = 4. The dotted dark grey (blue online) and light grey (orange online) curves, respectively,
denote the numerically determined linear stability threshold for critical m = 0 and m = 1
solutions out of CCF. The solid black line (from Abshagen et al. (2010)) with circles
(◦, •) characterizes the smooth transition between different nV states, while the dashed line
with diamonds (♦,�) gives the bifurcation threshold for pV states out of nV states. All
experimentally (numerically) obtained values are indicated as filled (open) symbols. The four
insets sketch these different solutions.

FIGURE 7. (Colour online) Isosurface of the azimuthal vorticity (Ωϕ = ±60) of numerically
simulated non-axisymmetric flow state. The m 6= 0 contributions to the state are clearly
visible. Control parameters are R1 = 200, R2 =−600 and Γ = 4.

by the azimuthal vorticity (Ωϕ = ±60). In contrast to the pV states presented above
(e.g. figure 2), this state also includes m 6= 0 contributions. However, the vortices
still remain toroidally closed, and the vortex generation and annihilation as well as
the propagation are similar to those illustrated in figure 2, but the axial reflection
symmetry is broken. In general, m = 0 modes are much stronger (compared to m 6= 0
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(b)(a)

FIGURE 8. (Colour online) Isosurface of the azimuthal vorticity (Ωϕ =±60) of two different
numerically simulated non-axisymmetric flow states. (a) Flow state exhibiting many more
vortices and visible m 6= 0 contributions. (b) Flow state with mainly helical (m = ±1)
contributions. Control parameters are Γ = 8, R2 =−300 and R1 = 174 in panel (a) as well as
R1 = 162 in panel (b).

contributions) due to the greater influence of rotationally symmetric Ekman cells,
which are generated by rotationally symmetric (non-rotating) lids.

After the above discussion of non-axisymmetric states in a Γ = 4 system, we now
focus on the influence of increasing the system length Γ and the thereby decreasing
the influence of Ekman-induced perturbations on bulk structures.

In general, we found that increasing the system length Γ leads to a strengthened
contribution of helical m 6= 0 azimuthal modes to the mode spectrum, resulting in a
much more wavy-like deformation of pV states (cf. figure 8(a) for Γ = 8). Apart from
this vortex modulation, the spatio-temporal behaviour and the dynamics are similar to
those of the smaller Γ = 4 system at higher counter-rotation. The processes of vortex
generation and annihilation remains qualitatively unchanged from those presented in
figure 2. However, owing to the axially enlarged bulk region, the number of vortices
increases accompanied by larger axial wavenumbers. Moreover, vortices are located
closer to the inner cylinder, which agrees with previous investigations of subcritical
nV states (Abshagen et al. 2010). Note that the flattened Ekman ‘potential’ near
mid-height leads to a more or less free displacement of the inner, non-propagating
vortex pair.

Furthermore, figure 8(b) illustrates a subcritical spiral state whose shape is similar to
that observed in the co-rotating system as described in (Heise et al. 2013). However,
in the counter-rotating case depicted here, besides m = ±1 we found various other
azimuthal wavenumbers |m|> 2. The flow state illustrated in figure 8(b) exhibits many
more partly toroidally closed vortices showing m 6= 0 contributions.

4. Conclusions
We have analysed numerically as well as experimentally a novel type of

axisymmetric flow state that exists in counter-rotating Taylor–Couette flow even below
the centrifugal instability of circular Couette flow and without any additional externally
imposed forces. In addition to different types of non-propagating vortex states
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(so-called nV states (Abshagen et al. 2010)), we observed propagating vortex solutions
with a toroidally closed topology (so called pV states).

In general, we obtained an excellent agreement between numerical and experimental
results. Propagating as well as non-propagating vortex states are generated (driven by
shear flow) at the Ekman layers near both end walls. The occurring non-propagating
flow states are members of a large family of multi-stable states differing in the
number n of vortices. These small, axisymmetric vortices are located close to the
inner cylinder. For propagating flow states, the axisymmetric small vortices propagate
towards mid-height and are always generated near the end walls. They generally
bifurcate via a supercritical Hopf bifurcation out of nV and exist in a wide parameter
range. Since Ekman cells are the driving force for the generation of pV and subcritical
nV states, they do not exist under axially periodic boundary conditions.

Furthermore, also toroidally closed and propagating but non-axisymmetric structures
appear for stronger counter-rotation and axially larger systems. These states can also
break the axial reflection symmetry. The novel propagating vortices may interact with
the non-propagating, axisymmetric states and give rise to complex dynamics in the
centrifugally stable regime of counter-rotating Taylor–Couette flow.
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G. 2010 End wall effects on the transitions between Taylor vortices and spiral vortices. Phys.
Rev. E 81 (6), 066313.

ALTMEYER, S., HOFFMANN, C. & LÜCKE, M. 2011 Islands of instability for growth of spiral
vortices in the Taylor–Couette system with and without axial through flow. Phys. Rev. E 84
(4), 046308.

ANDERECK, C. D., LIU, S. S. & SWINNEY, H. L. 1986 Flow regimes in a circular Couette system
with independently rotating cylinders. J. Fluid Mech. 164, 155–183.

AVILA, M., GRIMES, M., LOPEZ, J. M. & MARQUES, F. 2008 Global endwall effects on
centrifugally stable flows. Phys. Fluids 20, 104104.

BENJAMIN, T. B. 1978 Bifurcation phenomena in steady flows of a viscous fluid. I. Theory. – II.
Experiments. Proc. R. Soc. Lond. A 359, 1–26 and 27–43.

BODENSCHATZ, E., PESCH, W. & AHLERS, G. 2000 Recent developments in Rayleigh–Bénard
convection. Annu. Rev. Fluid Mech. 32 (1), 709–778.

BORRERO-ECHEVERRY, D., SCHATZ, M. F. & TAGG, R. 2010 Transient turbulence in
Taylor–Couette flow. Phys. Rev. E 81, 025301.

CLIFFE, K. A., MULLIN, T. & SCHAEFFER, D. 2012 The onset of steady vortices in Taylor–Couette
flow: the role of approximate symmetry. Phys. Fluids 24 (6), 064102.

COLES, D. 1965 Transition in circular Couette flow. J. Fluid Mech. 21 (3), 385–425.
CROSS, M. C. & HOHENBERG, P. C. 1993 Pattern formation outside of equilibrium. Rev. Mod.

Phys. 65 (3), 851–1112.
CZARNY, O., SERRE, E., BONTOUX, P. & LUEPTOW, R. M. 2003 Interaction between Ekman

pumping and the centrifugal instability in Taylor–Couette flow. Phys. Fluids 15, 467–477.



470 C. Hoffmann, S. Altmeyer, M. Heise, J. Abshagen and G. Pfister

DI PRIMA, R. C. & SWINNEY, H. L. 1981 Instabilities and transition in flow between concentric
rotating cylinders. In Hydrodynamic Instabilities and the Transition to Turbulence, Topics in
Applied Physics, vol. 45, pp. 139–180. Springer.

EDWARDS, W. S., BEANE, S. R. & VARMA, S. 1991 Onset of wavy vortices in the finite-length
Couette–Taylor problem. Phys. Fluids 3 (6), 1510–1518.

GOLUBITSKY, M., STEWART, I. & SCHAEFFER, D. G. 1988 Singularities and Groups in
Bifurcation Theory, vol. I, Applied Mathematical Sciences, vol. 51. Springer.

GUCKENHEIMER, J. & HOLMES, P. 1983 Nonlinear Oscillations, Dynamical Systems, and
Bifurcations of Vector Fields, Applied Mathematical Sciences, vol. 42. Springer.

HEISE, M., ABSHAGEN, J., HOCHSTRATE, K., KÜTER, D., PFISTER, G. & HOFFMANN, C. 2008
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