
Co-rotating Taylor–Couette flow enclosed by
stationary disks
M. Heise1,†, Ch. Hoffmann2, Ch. Will1, S. Altmeyer2, J. Abshagen1

and G. Pfister1

1Institut für Experimentelle und Angewandte Physik, Universität Kiel, D-24098 Kiel, Germany
2Institut für Theoretische Physik, Universität des Saarlandes, D-66123 Saarbrücken, Germany

(Received 15 April 2012; revised 23 July 2012; accepted 23 October 2012)

We report results of a combined numerical and experimental study on axisymmetric
and non-axisymmetric flow states in a finite-length, co-rotating Taylor–Couette system
in the Taylor vortex regime but also in the Rayleigh stable regime for moderate
Reynolds numbers (61000). We found the dominant boundary-driven axisymmetric
circulation to play a crucial role in the mode selection and the bifurcation behaviour
in this flow. A sequence of partially hysteretic transitions to other axisymmetric multi-
cell flow states is observed. Furthermore, we observed spiral states bifurcating via a
supercritical Hopf bifurcation out of these multi-cell states which strongly determine
the shape of the spiral. Finally, an excellent agreement between experimental and
numerical results of the full Navier–Stokes equations is found.
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1. Introduction

Hydrodynamic instabilities have been preferentially studied with idealized boundary
conditions, such as the centrifugal instability in Taylor–Couette flow. It is characterized
by a flow of a viscous fluid in the gap between two rotating cylinders (Tagg 1994),
where, under the assumption of infinite axial length, Taylor vortices appear from a
pitchfork bifurcation with a well-defined critical wavelength (Taylor 1923). Benjamin
and Mullin discovered that the pitchfork bifurcation is destroyed in a physical flow
owing to the presence of stationary endwalls, and the relevance of these axial ends for
bifurcation events in Taylor–Couette flow has been revealed in a series of subsequent
studies (Benjamin 1978a,b; Benjamin & Mullin 1981; Mullin 1982; Tavener & Cliffe
1991; Cliffe, Kobine & Mullin 1992).

Physically, the no-slip condition at the stationary endwalls reduces the azimuthal
velocity near these walls compared to the flow in the bulk, generating a boundary
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layer at bottom and top, which is directed radially inwards and recirculates in the
bulk of the system (Czarny et al. 2003). While the so-called Ekman vortices have
almost the size of Taylor vortices for a stationary outer cylinder, recent studies on
independently rotating cylinders have revealed that a large-scale circulation consisting
of two cells can emerge at the boundary layer near the ends (Hollerbach & Fournier
2004). Moreover, multiple localized axisymmetric states can appear from such a
large-scale boundary-driven Ekman flow (Abshagen et al. 2010) and this cellular
flow can undergo time-dependent instabilities towards non-axisymmetric spiral vortices.
Localized spirals have been observed near the endwalls in a counter-rotating flow
(Andereck, Liu & Swinney 1986; Heise et al. 2008a) while global spirals are
found numerically in the large-scale circulation of solid-body rotation over stationary
endwalls (Avila et al. 2008).

In this article, we elucidate the influence of the boundary-driven circulation
on co-rotating Taylor–Couette flow. The flow between co-rotating cylinders has
been studied mainly with a focus on nonlinear pattern formation (Nagata 1988;
Cross & Hohenberg 1993; Hegseth, Baxter & Andereck 1996), with an emphasis
on magnetohydrodynamical phenomena with respect to astrophysical application
(Hollerbach & Rüdiger 2005; Duschl & Britsch 2006; Ji et al. 2006; Stefani et al.
2006) and in turbulent flows (Paoletti & Lathrop 2011; van Gils et al. 2011). The
boundary-driven circulation studied here is generated by stationary endwalls at bottom
and top. Recent attempts have been made to quantitatively reduce the boundary-driven
circulation by rotating endwalls in the context of bifurcation studies (Abshagen et al.
2004; Heise et al. 2009) as well as in astrophysical application (Burin et al. 2006;
Schartman, Ji & Burin 2009). However, the endwalls remain an integral part of the
physical realization of Taylor–Couette flow that qualitatively differs in bifurcation
behaviour from circular Couette flow (Benjamin 1978a,b; Benjamin & Mullin 1981;
Heise et al. 2009; Abshagen et al. 2010). Here, we focus on the underlying
axisymmetric flow of finite co-rotating Taylor–Couette flow as well as the dynamics
and the bifurcation behaviour of spiral modes that appear above and even in the
Rayleigh stable regime for inviscid flows. In this co-rotating flow regime the axially
infinite, circular Couette flow (CCF) becomes centrifugally unstable and axisymmetric
toroidally closed cells (Taylor vortices) appear. Their onset is well-approximated by
the Rayleigh criterion, given by R1 = 2R2 for our radius ratio (R1 and R2 are defined
below).

Therefore, precise Taylor–Couette experiments and numerical simulations of the
full Navier–Stokes equations are performed and compared in the Rayleigh stable
and Rayleigh unstable regime. We focus on the influence of the boundary-driven
circulation on co-rotating Taylor–Couette flow.

2. The system

In the Taylor–Couette system, a Newtonian fluid of kinematic viscosity ν fills the
annular gap between two concentric, independently rotating cylinders (inner, outer
radii r1,2; angular velocities Ω1,2, system length L, gap width d = r2 − r1). Non-rotating
rigid lids close the gap and serve as axial endwalls. Geometric parameters are the
aspect ratio Γ = L/d and the radius ratio which is fixed throughout this article at
η = r1/r2 = 0.5.

2.1. Numerical simulations
The system is governed by the Navier–Stokes equations (NSE). Cylindrical coordinates
r, ϕ, z are used to decompose the velocity field into a radial component u, an
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azimuthal one v, and an axial one w. All variables and parameters are dimensionless
(lengths are scaled by the gap width d, times t by the radial diffusion time d2/ν, and
the pressure p by ρν2/d2) leading to the dimensionless NSE

∂tu=∇2u− (u ·∇)u−∇p. (2.1)

The radial (no-slip) boundary conditions for v are given by the Reynolds numbers
R1 = r1Ω1 d/ν and R2 = r2Ω2 d/ν, which are just the reduced azimuthal velocities of
the respective cylinder surface.

The numerical simulations were done with the G1D3 code (Altmeyer et al. 2010),
a combination of a finite-differences method in t, r, and z and a Galerkin expansion
in ϕ. Since we studied finite-length cylinders with lids bounding the annulus axially,
we do not use here a spectral decomposition in the axial direction. The discretization
(a forward time, centred space (FTCS) algorithm) has been done on staggered grids
in the r–z plane following the procedure of Hirt, Nichols & Romero (1975). It yields
simple expressions for the derivatives, it does not require boundary conditions for
the pressure, and it avoids difficulties with boundary conditions for more than one
velocity field component at the same position. We used homogeneous grids with
discretization lengths 1r = 1z = 0.05 which have been shown to be more accurate
than non-homogeneous grids. Time steps were 1t < 1/3600.

Azimuthally, all fields f = u, v,w, p were expanded as

f (r, ϕ, z, t)=
mmax∑

m=−mmax

fm(r, z, t)eimϕ. (2.2)

For the flows investigated here, a truncation of the above Fourier expansion at
mmax = 8 has been verified to properly resolve the anharmonicities in the fields. Deeper
investigations have shown that the (cylindrical) system always prefers structures with
smaller azimuthal wavenumbers m. This also holds for the subcritical case where
m 6= 0 modes (originating from fluctuations) are excited by m = 0 modes (originating
from the endwalls) through nonlinearities (cf. Altmeyer et al. 2010 for the interaction
of m = 0 and m 6= 0 structures). The azimuthal Fourier spectrum effectively vanishes
for m> 2.

The system of coupled equations for the amplitudes fm(r, z, t) of the azimuthal
normal modes −mmax 6 m 6 mmax is solved with the FTCS algorithm. Pressure and
velocity fields are iteratively adjusted to each other with the method of ‘artificial
compressibility’ (Peyret & Taylor 1985):

dp(n) =−β∇ ·u(n) (0< β < 1), (2.3)

p(n+1) = p(n) + dp(n), (2.4)

u(n+1) = u(n) −1t∇(dp(n)). (2.5)

The pressure correction dp(n) in the nth iteration step, being proportional to the
divergence of u(n), is used to adapt the velocity field u(n+1). The iteration loop
(2.3)–(2.5) is executed for each azimuthal Fourier mode separately. It is iterated until
∇ · u has become sufficiently small for each m mode considered – the magnitude of
the total divergence never exceeded 0.02 and typically it was much smaller. After that
the next FTCS time step is executed.

For code validation, we compared travelling and non-travelling solutions within a
wide range of wavenumbers (1.6 < k < 6) with experiments (e.g. Heise et al. 2008a)
and with previous numerical simulations (Büchel et al. 1996) and close to onset also
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with Ginzburg–Landau results (Recktenwald, Lücke & Müller 1993). Furthermore, we
compared bifurcation thresholds of nonlinear solutions with the respective stability
boundaries of the linearized NSE (Langford et al. 1988) obtained by a shooting
method that is described by Pinter, Lücke & Hoffmann (2003). As expected from our
experience with primary vortex structures in the Taylor–Couette and Rayleigh–Bénard
problem, the G1D3 FTCS bifurcation thresholds for our discretization typically lie
1 %–2 % below the respective linear stability thresholds. This deviation significantly
reduces for finer discretization. We also investigated how the nonlinear solutions
change when varying mmax and/or the grid spacing. From these analyses, we
conservatively conclude that typical spiral frequencies have an error of less than
about 0.2 % and that typical velocity field amplitudes of non-propagating vortices
can be off by significantly less than 3 %–4 %. Time steps were always well below
the von Neumann stability criterion and by more than a factor of three below the
Courant–Friedrichs–Lewy criterion. We found an error depending on the variation of
time steps to lie below 1 %. Neither higher radial and axial resolutions nor higher
maximal azimuthal mode numbers lead to a significantly improved accuracy of the
observed structures.

In order to approximate the case of infinitely long cylinders without axial lids, we
performed a linear stability analysis of the basic flow for an axially periodic system
(λ = 2π/k) using a shooting method. Any linear stability thresholds of axisymmetric
m = 0 modes presented here are critical curves – they correspond to the onset of
Taylor-vortex flow (TVF) in the axial infinite system.

2.2. Experimental setup

In the experiments the inner cylinder is machined from stainless steel having a
radius of r1 = (12.50 ± 0.01) mm, while the outer cylinder is made from optically
polished glass with a radius of r2 = (25.00 ± 0.01) mm. This results in a gap width
d = r2 − r1 = (12.50± 0.02) mm and a radius ratio η = r1/r2 = 0.5 which is held fixed
for all measurements. At top and bottom the fluid is confined by solid endwalls which
are held fixed in the laboratory frame. The distance between these walls defines the
axial height L of the flow which is adjustable within an accuracy of 0.01 mm.

The rotation of the cylinders is controlled by a PLL-unit achieving an accuracy
of 1f /f ∝ 10−4 in the short-term and 1f /f ∝ 10−7 in the long-term average. As
a working fluid within the gap between the two concentric cylinders a silicone
oil with a density ρ = 0.93 g/cm−3 and a kinematic viscosity ν = (10.6 ± 0.1) cSt
is used. The uncertainty of ±0.1 cSt refers to the measurement of the absolute
value of kinematic viscosity. The accuracy of ν during a measurement is primarily
determined by the temperature variation of the fluid that is thermostatically controlled
to (24.00 ± 0.01) ◦C. This yields 1ν = ∂ν/∂T|24.00 ◦C1T ≈ 0.0025 cSt. Though the
uncertainty in the absolute value of ν introduces an uncertainty of the Reynolds
numbers 1Rabs/R ∝ 10−2 in the absolute value of R the variation in Reynolds number
with time is within 1R/R ∝ 10−4 during a measurement. This variation determines the
resolution in Reynolds numbers that is achieved in the experiment.

For flow visualization purposes, 0.2 % aluminium flakes with a length of 80 µm are
added to the fluid. Flow visualization measurements are performed by monitoring the
system with a CCD-camera in front of the cylinder recording the luminosity along a
narrow axial stripe. The spatio-temporal behaviour of the flow is then represented by
successive stripes for each time step at a constant ϕ position leading to continuous
space–time plots.
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FIGURE 1. Space–time plots of experimentally obtained flow visualization (grey coded) and
numerically (white dotted lines) obtained vortex boundaries of flow states for fixed inner
cylinder rotation R1 = 130 and system length Γ = 8 while quasi-statically decreasing (a) and
increasing (b) outer cylinder rotation R2. Step sizes of both R2 ramps are 0.5 in experiments as
well as in simulations. Time steps are one diffusion time per R2 step.

Especially for the determination of bifurcation points we utilize laser Doppler
velocimetry (LDV). These measurements have always been performed at a fixed axial,
radial and azimuthal position (r, ϕ, z) (see Heise et al. 2008a for details).

3. Results

3.1. Axisymmetric flow states

We start our discussion with the investigation of different axisymmetric states each
consisting of an even number of vortices with the azimuthal wavenumber m = 0. All
these states can be distinguished by the number of vortices, which strongly depends on
the control parameters R1 and R2 and the system length Γ . Note that for inner-cylinder
rotation rates R1 & 180 non-axisymmetric states are also observed.

For fixed Γ = 8 and R1 = 130 (cf. red arrow in figure 3a), the number of vortices
varies significantly with R2 as shown in the space–time plots of figure 1. There,
axial cuts of the flow are depicted for quasi-statically decreasing (a) and increasing
(b) R2. The figure combines experimental (grey coded reflection intensity from flow
visualization measurements given by the local orientation of the aluminium flakes)
as well as numerical results (white dotted lines denoting the zeros of the axial
velocity component w at mid-gap). The latter indicate the vortex boundaries and
are an adequate measure to determine the axial wavenumber.

For stronger co-rotation (R2 & 65), a pair of two large vortices (2V state) exists
driven by the non-rotating lids at the axial ends. This 2V state undergoes for
decreasing R2 (figure 1a) a sequence of transitions to states with four cells (4V)
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FIGURE 2. Four different flow visualizations for the axisymmetric flow states as illustrated in
figure 1 at different R2. Therefore numerically determined iso-surface plots of the azimuthal
vorticity Ωϕ = ∂zu − ∂rw are used in order to describe the topology of the vortices. Red refers
to positive vorticity and green to negative vorticity. (a) 8V: R2 = 5 (Ωϕ =±75), (b) 6V: R2 = 45
(Ωϕ = ±70), (c) 4V: R2 = 57 (Ωϕ = ±40) and (d) 2V: R2 = 70 (Ωϕ = ±10). Other control
parameters for all simulations are Γ = 8 and R1 = 130.

at R2 ≈ 63, six cells (6V) at R2 ≈ 53, and finally eight cells (8V) at R2 ≈ 10. These
multi-cell states are characterized by equally distributed small vortices in the bulk with
one significantly larger vortex near each axial end. In figure 1(b), the reverse transition
sequence is observed for increasing R2 starting with an 8V state at R2 = 0. The latter
exhibit a strong hysteresis and become unstable at R2 ≈ 42 against a 6V state. On
the other hand, the transitions from 6V to 4V and from 4V to 2V are found to be
non-hysteretic within the experimental and numerical accuracy. While a non-hysteretic
transition is well-known for the onset of Taylor cells and therefore expected for the
primary 2V–4V transition, the apparent absence of hysteresis in a secondary transition,
i.e. between 4V and 6V, is unexpected. Note that the inertia of the aluminium particles
used in the experimental setup together with small velocities lead to a blurred image,
especially of the transitions to 4V and to 2V.

In order to give a three-dimensional impression of the flow states that are depicted
in figure 1, the four axisymmetric flow states that appear are illustrated in figure 2 by
the numerically determined iso-surface plots of the azimuthal vorticity Ωϕ = ∂zu− ∂rw.
Red refers to positive vorticity and green to negative vorticity (Altmeyer & Hoffmann
2010). The flow states are all observed at the same control parameters Γ = 8 and
R1 = 130, but different R2 values – (a) 8V: R2 = 5, (b) 6V: R2 = 45, (c) 4V: R2 = 57
and (d) 2V: R2 = 70. Qualitatively the same scenario is observed for other values
than R1 = 130. The numerically determined phase diagram for Γ = 8 depicted in
figure 3(a) therefore solely contains the non-hysteretic transitions between the different
multi-cell states and gives a good impression of the stability of the multi-cell states.
The long horizontal red arrow in this figure indicates the parameters used in figure 1.
Additionally to figure 1, a two-cell state of different shape occurs for small R1 and
R2. This 2V′ state is similar to the 2V state with the exception that each of the two
vortices is bounded to its respective axial end and there exists a bulk with w≡ 0 which
furthermore increases its axial extent with decreasing R2. Note that the transition
between 2V and 2V′ is smooth.
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FIGURE 3. (a) Numerically determined phase diagram of multi-cell states for Γ = 8. All states
are obtained by quasi-statically varying R2 at different fixed R1. The numerical simulations were
restricted to the m = 0-Fourier subspace of only axisymmetric solutions of the Navier–Stokes
equations. Different multi-cell states are labelled with sketches which roughly describe the
vortex configuration in the (r, z)–plane of the annulus. To guide the eyes, the region of the 2V′
state is hatched and that of the 4V state is coloured with grey. The blue dotted line of critical R1

(resulting from linear stability analysis) describes the onset of TVF in the axially infinite system.
The long horizontal red arrow indicates the parameters used in figure 1. (b) Comparison of the
transition from the 2V state to the 4V state for Γ = 8 and Γ = 12. The Rayleigh curves are
indicated as the dashed green line in both phase diagrams and it coincides very well with the
2V–4V boundary for Γ = 12 in (b).

The blue dotted line in figure 3(a) denotes the critical linear stability threshold of
TVF. For R2 . 90, the TVF onsets lie above the multi-cell transition thresholds. Thus,
as a consequence of the boundary-induced disturbances of the rigid lids, the multi-cell
states occur below linear (m = 0) instability of CCF. In addition to that, the Rayleigh
curves, given by R1 = 2R2 for our radius ratio are indicated as dashed green line in
both phase diagrams in figure 3.

Figure 3(b) compares the 2V–4V boundary for Γ = 8 with that for Γ = 12. For
larger aspect ratios Γ & 12, the respective 2V–4V boundaries coincide very well with
the Rayleigh criterion in the region being investigated (grey dashed line).
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FIGURE 4. Flow visualizations of two different spiral states: one of them (a,b) contains two
large Ekman vortices and the other (c,d) additionally contains a pair of small vortices at
mid-height. (a,c) Experimentally obtained space–time plots. (b,d) Numerical simulations of
the corresponding flow states with Ωϕ = ±95 (b) and Ωϕ = ±90 (d). Control parameters are
Γ = 10 as well as (a,b) R1 = 318, R2 = 160 and (c,d) R1 = 247, R2 = 110.

3.2. Non-axisymmetric spirals
Owing to the restriction to m = 0 solutions, figure 3(a) contains no spirals. They
occur in the unrestricted system for R1 & 180 close to the onset of the multi-cell
states. These spiral states can be seen as a combination of upwards-propagating, left-
winding spirals localized in the upper part and downwards-propagating, right-winding
spirals localized in the lower part of the bulk. We verified that they bifurcate via a
supercritical Hopf bifurcation either out of the 2V state or 4V state.

The phase-generating defect between the localized spiral states is similar to the P+
defects in counter-rotating systems (Heise et al. 2008b). Depending on the control
parameters, one finds two different types of such states as illustrated in the space–time
plots in figure 4(a,c) and the iso-vorticity plots in figure 4(b,d) for two (R1,R2)

parameter combinations marked by crosses in figure 5. The iso-surface plots of the
vorticity Ωϕ = ±120 describe the topology of the vortices. Red refers to positive
vorticity, green to negative vorticity. Both states are very similar but differ significantly
by the two small vortices which occur for the control parameters of figure 4(c,d) near
the axial middle of the system. As a consequence of this superimposed two-cell mode,
the radial flow at mid-height has switched from outflow in figure 4(a,b) to inflow in
figure 4(c,d). However, the phase of both spirals is always generated near the adjacent
outflow regions.

3.3. Stability
The phase diagram of figure 5(a) illustrates, for the same aspect ratio Γ = 10,
the relation between the 2V–4V boundary and the onset of spirals. The shape
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FIGURE 5. (a) Phase diagram of bifurcating spirals for a fixed aspect ratio Γ = 10. The solid
red line with the filled circles indicates the experimentally obtained onset of the spirals and
the corresponding open circles the numerically obtained onset. Additionally the numerically
determined boundary between the 2V and the 4V multi-cell states is shown (black line with
open circles) and the numerically calculated, dotted blue line denotes the critical linear stability
threshold of axisymmetric (m= 0) solutions corresponding to the onset of TVF. The red crosses
indicate the two control parameter values of both spirals depicted in figure 4. (b) Phase
diagram of spiral flow for different aspect ratios (from bottom to top) Γ = 6 (blue), Γ = 8
(black), Γ = 10 (red), and Γ = 12 (green). The filled (open) circles indicate the experimentally
(numerically) determined onsets of spirals for these aspect ratios. The grey dotted line denotes
the numerically obtained critical linear stability threshold of axisymmetric (m= 0) solutions.

of the spiral structure of figure 4 is determined by the position of the respective
control parameter combination relative to the 2V–4V boundary – figure 4(a,b) below,
figure 4(c,d) above – as indicated by the crosses. The onset of these spirals (red) is
determined experimentally by LDV measurements by quasi-statically increasing R1 and
analysing the corresponding time series for the frequency that appears. Additionally,
the critical linear stability threshold for m= 0 (which corresponds to the onset of TVF
in the axially infinite system) is plotted as the blue dotted line. This curve describes
the lowest threshold where the basic CCF can become unstable in the axially infinite
system – all the other critical stability curves for m 6= 0 lie above this curve (and are
therefore not included here). Note that the spirals observed here do not appear in the
infinite system. The endwall-induced axisymmetric vortex structure in the finite system,
whose amplitude smoothly grows with increasing R1, is essential for these spirals to
exist. The onset curves of these spirals and the multi-cell state cross the (m = 0)
stability boundary of CCF in nearly the same control parameter regime. Thus, the
spiral states corresponding to figure 4(a,b) bifurcate in the linear stable regime, those
corresponding to figure 4(c,d) in the linear unstable regime. The spirals are triggered
by the non-rotating lids and their onset therefore strongly depends on the aspect ratio
Γ . The onsets of these spirals are illustrated in the experimentally observed (filled
coloured circles) and numerically determined (open coloured circles) phase diagram
of figure 5(b) for four different Γ . The bifurcation line of spiral vortices enters the
Rayleigh stable regime at R1 ≈ 130. Therefore, time-dependent spirals dominate the
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Rayleigh stable Taylor–Couette flow well below linear stability threshold even for a
larger aspect ratio at sufficiently large R2.

4. Conclusions

Boundary-driven circulation plays a crucial role in the mode selection and the
bifurcation behaviour in co-rotating Taylor–Couette flow and also in the Rayleigh
stable regime. For stronger co-rotation, we found a dominant axisymmetric flow state
consisting of two large vortices. On reducing the outer-cylinder Reynolds number
R2, this state undergoes a sequence of partially hysteretic transitions to different
axisymmetric multi-cell states. These transitions are always accompanied by a decrease
of the wavelength of all bulk vortices and especially of the Ekman vortices.

Furthermore, we found spiral states in the Rayleigh stable regime bifurcating via
a supercritical Hopf bifurcation out of the respective axisymmetric flow state (two
cells or four cells). The shapes of these spiral states are strongly determined by the
underlying axisymmetric multi-cell (n V) state, i.e. m 6= 0 disturbances may grow, even
below the linear (m = 0) instability of CCF due to boundary-induced m = 0 modes
which continuously stimulate m 6= 0 modes emerging out of m 6= 0 fluctuations.

While in the classical case of a non-rotating outer cylinder, the number of Taylor
cells at onset corresponds basically to the value of the aspect ratio Γ (at least for Γ
being an even multiple of the gap width), we found that in the co-rotating case the
number of cells is four at onset, i.e. two large Ekman cells and two small Taylor cells
in the bulk of the system. This is an interesting new finding with possible implications
for the multiplicity of states and mode interaction in the co-rotating regime.

Stability and turbulent transport of angular momentum in co-rotating Taylor–Couette
flow have also attracted considerable attention in recent years with respect to the
understanding of astrophysical disks. (cf. Hollerbach & Rüdiger 2005; Duschl &
Britsch 2006; Ji et al. 2006; Stefani et al. 2006; van Gils et al. 2011; Paoletti &
Lathrop 2011; Avila 2012).

Though secondary circulation induced by endwalls in experimental setups is often
reduced by suitable endwall rotation (Abshagen et al. 2004; Hollerbach & Fournier
2004; Burin et al. 2006; Schartman et al. 2009; Altmeyer et al. 2010), global endwall
effects can alter the stability behaviour of co-rotating Taylor–Couette flow (Avila
et al. 2008). Our combined experimental and numerical work allows insights into the
solution structure of Rayleigh-stable flows having strong axial variation of angular
momentum.
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