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Abstract⎯We present numerical simulations of ferrofluidic Couette f low in between counter-rotating
cylinders with a spatially homogeneous magnetic field but subject to time-periodic modulation. Such
a modulation can lead to a significant inner Reynolds number ( ) enhancement for primary bifur-
cating solutions, for either helical or toroidal f low structures. Moreover, the external introduced mod-
ulation frequency renders the different solutions to step up one level in the hierarchy of complexity.
Fixed point solutions become limit cycles and limit cycles become 2-tori. Moreover, for sufficiently
strong modulation amplitudes of the magnetic field stability can be exchanged between primary bifur-
cating spiral and ribbon solutions, both appearing at a common threshold. In addition, a stable bifur-
cation branch with direct connection of ribbon and Taylor vortices via wavy Taylor vortices is found.
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A benchmark example to investigate problems of instability, non-linear behavior, and pattern forma-
tion is the motion of an incompressible viscous f luid between concentric rotating cylinders (Taylor–Cou-
ette system, TCS) [1, 2]. Motivated by widespread technological importance of such a f low (e.g. in pump-
ing processes), various works have been shown that TCS with an external temporal forcing is a paradigm
problem to study the control of f low instabilities.

Classical such an external forcing typically enters mechanical into the system via modification in the
boundary conditions, e.g., harmonically modulated rotations of either the inner or outer cylinder (or
both), harmonic oscillations of one cylinder in the axial direction, pulsation, etc. [3–12]. Already the early
experimental works by Donnelly et al. [7, 8] detected a stabilization effect resulting from such forcing.
Since those days this problem has served as model to gain understanding into time-periodic forcing and
therefrom resulting effects.

Considering a magnetic f luid, e.g., a ferrofluid [13–15] offers the great advantage to maintain a sta-
tionary setup while introducing any periodic forcing directly into the f luid within the bulk. To date numer-
ous numerical and experimental studies for ferrofluidic Couette f lows under static magnetic fields have
been performed. These focused on various aspects, as different field orientations, agglomeration, internal
magnetization, torque measurements, etc. [16–30]. The common conclusion of all these works is the fact
that a static magnetic field, independently of its orientation stabilizes the basic state (Circular Couette
flow, CCF), i.e., moving the bifurcation threshold of the primary instability to greater values of the
respective control parameter (e.g., the inner Reynolds number Rei).

To date the studies of ferrofluids under alternating magnetic fields are relatively rare and if so special
attention is given to viscosity effects [31] and heat behavior [32, 33]. However, analogosly to static fields,
the modulated fields with sufficiently high modulation frequency stabilize the CCF basic state [15, 31] and
can provide an accurate control parameter to balance the system to be either sub- or supercritical [15].
Different works, mainly focused on the use of temporal modulation in heating binary f luids and ferroflu-
ids [34–36], illustrated that the parameter modulation in the hydrodynamic systems causes the paramet-
ric resonance. Thereby three types of response are possible with respect to the external forcing parameter.
A synchronous response in the case, when the system response follows the external forcing, i.e., the fre-
quency of oscillating f low coincides with the frequency, associated with the excitation period. A subhar-
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monic response, if the oscillations of the system characteristics have a frequency twice the external forcing,
i.e., half a period. A quasi-periodic response in the case, when the f low oscillations may have two different
and not rationally related characteristic frequencies [37].

There is raising interest in using modulated magnetic fields for the f low control due to their highly
desired features and huge variety in applications. One field with growing interest and great opportunities
are medical applications. Here ferrofluids can be used as carriers of drugs, which then, after injection into
a blood vessel can be concentrated at a desired position by applying a strong magnetic field gradient [38].
Other opportunity lies in the therapy technique for cancer treatment by hyperthermia. Enriching f luid
particles that are marked with tracer substances in the tumor tissue, an alternating magnetic field can be
applied, while the energy losses due to magnetization change in the particles can be used to heat up the
tissue [39]. This allows avoiding undesired side effects to other organs while destroying the tumor.

For here studied pure axial (modulated) magnetic field, the classical f low structures appearing in TCS
are preserved. Thus, primary stationary bifurcating solutions are toroidally closed Taylor vortex f low
(TVF) [1, 40, 41] and the two axisymmetric degenerated oscillatory spiral vortices (spiral vortex f low, SPI)
[40, 41] with left or right winding helicoidal vortices appearing in symmetry breaking Hopf bifurcation.
Together with the latter, also ribbon (RIB) state bifurcates, which can be seen as a non-linear superposi-
tion of the two oppositely propagating SPIs to an axially standing wave. The stability of TVF and SPI
at onset is regulated by the order of their appearance depending on the given control parameter, e.g., outer
cylinder rotation speed or as in the present case the modulation amplitude of the magnetic field.

From the dynamical system point of view the classical TVF, appearing in circle pitchfork bifurcation,
represents a fixed point solution, while the classical SPI and RIB correspond to limit cycle solutions [2, 42, 43].
However, this changes in the presence of a modulated magnetic field as the f low dynamics increases in
complexity. Here the additional modulation frequency  increases the dimension of the underlying
manifold by one. Thus, the former stationary (fixed point) solution becomes periodic limit cycles (here
TVF), as well as the former periodic solution becomes a quasi-periodic solution (here SPI, RIB, and
wTVF). Moreover, sufficiently strong modulated magnetic fields can exchange stability between SPI and
RIB and with this also stabilize the whole wavy Taylor vortex (wTVF) branch, as part of the transition pro-
cess between different topological (helical and azimuthal closed) structures. Earlier studies revealed this
as “jump bifurcation” [44, 45].

1. NUMERICAL METHODS

1.1. System Setting

We consider a standard TCS (Fig. 1) consisting of two concentric, independently rotating cylinders
and the gap between them filled with an incompressible, isothermal, homogeneous, mono-dispersed fer-
rofluid of kinematic viscosity  and density ρ. The inner (outer) cylinder has radius ( ) and rotates
with the angular velocity ( ). In the axial (z) direction we use periodic boundary conditions corre-
sponding to a fixed axial wavenumber , while the no-slip boundary conditions are used on the
cylinder surfaces. Using the cylindrical coordinate system  the system can be characterized by the
velocity field and the corresponding vorticity field , . In the present work the
radius ratio of the cylinders is kept fixed at . Further a counter-rotating system setup is studied
with fixed outer Reynolds number . The time and length scales are made dimensionless by the
diffusion time  and the gap width d and the pressure in the f luid is normalized by . Worth men-
tioning that here we use the assumption of a single-component ferrofluid neglecting diffusion of nanopar-
ticles, which also may play a role and affect the f low dynamics.

The periodical forcing is applied via a sinusoidal modulation signal to the external magnetic field,
which is orientated parallel to the system symmetry (z) axis, uniform in space and harmonic in time

. Note that in the static case such a pure axially-orientated magnetic field pre-
serves the basic system symmetry (see Subsection 1.3), it only shifts the stability thresholds as reported
in the earlier studies [23–25]. The magnetic field H and the magnetization M are conveniently normalized
by the quantity  with free space permeability .
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Fig. 1. Schematic of the Taylor–Couette system (TCS) with an external applied spatial homogeneous but time-dependent
magnetic field .
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1.2. Ferrohydrodynamical Equation of Motion

The non-dimensionalized hydrodynamical equations [25, 27, 46] are derived from

(1.1)

The velocity fields on the cylindrical surfaces are  and , with
the inner and outer Reynolds numbers , where  and 
are the non-dimensionalized inner and outer cylinder radii, respectively.

To solve Eq. (1.1) one needs a further equation describing the magnetization of the ferrofluid. Consider
equilibrium magnetization of an unperturbed state with homogeneously magnetized ferrofluid at rest and
the mean magnetic moment orientated in the direction of the magnetic field: . The magnetic
susceptibility χ of the ferrof luid can be approximated with Langevin’s formula [47]. The initial value χ
is set to be 0.9 with use of a linear magnetization law. The ferrofluid studied corresponds to APG933 (Fer-
rofluidics) [48, 49]. We consider the near-equilibrium approximations of Niklas [19, 50] with small

 and small magnetic relaxation time : . Using these approximations, one can
obtain [27] the following magnetization equation

(1.2)

where

(1.3)

is the Niklas coefficient [19], μ is the dynamic viscosity,  is the volume fraction of the magnetic material,
 is the symmetric component of the velocity gradient tensor [27, 46], and  is the material-dependent

transport coefficient [46], which we choose to be  [30, 46, 51, 52]. Using Eq. (1.2) we can elim-
inate the magnetization from Eq. (1.1) to obtain the following ferro-hydrodynamical equations of motion
[25, 27, 46]

(1.4)

where , pM is the dynamic pressure incorporating all magnetic terms that can be
expressed as gradients, and sz is the Niklas parameter [Eq. (1.6)]. To the leading order, the internal mag-
netic field in the ferrofluid can be approximated as the externally imposed field [25], which is reasonable
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for obtaining dynamical solutions of the magnetically driven f luid motion. Equation (1.4) can then be sim-
plified as follows:

(1.5)

This way, the effect of the magnetic field (here homogeneous but periodically alternating with
) and all the magnetic properties of the ferrofluid on the velocity field can be

characterized by a single (here time-dependent) Niklas parameter [19]

(1.6)

with two time-independent control parameters

(1.7)

 being the static contribution of the driving,  the modulation amplitude, and  the modulation fre-
quency. In the present study we consider a pure modulated magnetic field (without any static contribution,

) in the high frequency limit , which means that the effects of inertia of the f luid can be
neglected and the system basically sees an averaged magnetic field [15].

1.3. Symmetries

In absence of any periodic forcing the symmetry group of the Taylor–Couette problem is  [2].
The basic state is invariant to a number of symmetries, whose actions on a general velocity field are
as follows:

(1.8)

The SO(2) symmetry comes from rotations around the axis.  remains the symmetry group
for the periodically forced system. While SO(2) remains unaffected by the modulation, the axial reflection
symmetry is broken and therefore is no longer a symmetry of the problem. Instead, composing with a half-
period time translation one obtains a glide-time symmetry  of the system. This symmetry, together with
axial translations, still gives the symmetry group O(2). Explicit acting on the velocity fields, one obtains
following expression of this symmetry (half-period-flip-symmetry),

(1.9)

With this R changes from the purely spatial symmetry to a space-time symmetry. A consequence of the
space-time  symmetry generated by G implies a more complex bifurcation scenario, e.g., inhibiting
period doubling via a simple negative eigenvalue  [4, 53].

1.4. Numerics
The ferrohydrodynamical equations of motion Eq. (1.4) can be solved [24, 25, 27] by combining a stan-

dard, second-order finite-difference scheme in (r, z) with the Fourier spectral decomposition in  and
(explicit) time splitting. The variables can be expressed as follows:

(1.10)

where f denotes one of the variables . For the parameter regimes considered, the choice of
 provides adequate accuracy. We use a uniform grid with the spacing  and the
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Fig. 2. Bifurcation diagram. Time averaged mode amplitudes  of (dominant) radial f low field amplitudes for TVF
( , ) and SPI ( , ) at mid gap for different modulation amplitudes  in the magnetic fields versus  inner
Reynolds number Rei and  relative distance , from the respective onset ( ) for
given modulation amplitudes  in the magnetic fields. Solid and open symbols indicate the solution to be stable and
unstable, respectively. SPI bifurcate stable for  and remain stable afterwards, while TVF bifurcates initially
unstable and become stabilized for larger Rei. Note for the seek of visibility the RIB branches are only shown close to
onset. RIB bifurcate at a common threshold while both exchange stability at onset. Thus RIB appear stable for

. See also Fig. 7.
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obtained from the Fourier decomposition in the axial direction

(1.11)

where  is the axial wavenumber.

2. RESULTS

2.1. Bifurcation Behavior

In classical TCS, the primary solutions of TVF appear in a supercritical pitchfork of the revolution
bifurcation breaking the translation symmetry . TVF represent a steady axisymmetric family of solu-
tions parameterized by their axial location, which visually appear as a pile of “fluid donuts.” Meanwhile,
SPI and RIB, appear in the O(2) symmetry breaking Hopf bifurcation (eliminating ). From the dynam-
ical point of view these correspond to fixed point and limit cycle solutions, respectively. However, the
periodical forcing changes this “classical” scenario. In fact, it increases the underlying manifold by one
dimension. Thus, TVF appear as a limit cycle solution, while SPI and RIB become only quasi-periodic
solutions on a 2-torus. We will focus on this in more detail in Subsection 2.1.4.

2.1.1. Stability thresholds with variation in modulation amplitude . Figure 2a shows the forward
bifurcating branches of SPI ( ) and TVF ( ) solutions for different modulation amplitudes  of the
magnetic field as indicated. The onsets correspond to the critical curve with variation in the modulation
amplitude  (Fig. 7). The bifurcation thresholds for RIB and SPI coincide [2, 45, 54]. For all but

 = 1 RIB are unstable at the onset, while SPI are stable.

Being supercritical for SPI, RIB, and TVF the dominant mode amplitudes  and  grow in the
well-known square root manner. We note that here we use the time-averaged mode amplitudes ; 
are time-periodic according to the modulation frequency  (cf. Fig. 5).
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However, there are several obvious differences in the branches corresponding to the two different solu-
tions. The bifurcation branches for SPI remain basically the same, they just become shifted together with
the corresponding onset to greater Rei with increasing  (to the right in Fig. 2a). SPI remain stable in
almost entire parameter range presented here. The TVF branches behave differently with increasing mod-
ulation amplitude. First of all, TVF are unstable close to their onsets and become stabilized for greater .
Second, being supercritical, the slopes with increasing Rei are much smaller than those for SPI (at least
for small and moderate values ). Third, these slopes continuously steepen with increasing . This
modification in the bifurcation characteristics is best visible by rescaling the bifurcation scenario with the
corresponding critical onsets (Fig. 2b). All curves for SPI fall together (i.e., on top of each other). On the
other side, the mode amplitudes for TVF with increasing modulation amplitudes  grow noticeably
faster, and thus the corresponding slopes steepen. Thus, SPIs seem to be more robust against greater mod-
ulation amplitudes, i.e., their internal f low dynamics remains the same.

As a result, one can say that an increase in the modulation amplitude  moves the onset of all pri-
mary instabilities SPI, RIB, and TVF to the greater values of the control parameter Rei (to the right in Fig. 2a)
and with this stabilizes the CCF basic state against any primary appearing instability. Although the mag-
nitude of stabilization is different, it does not change the bifurcation order (for here considered parame-
ters). Similar numerical and experimental observations have been already found for increasing field
strength in static magnetic fields [22–24] and recently for TVF in modulated magnetic fields [15] with the
outer cylinder at rest. For sufficiently large modulation amplitudes the stability in the primary bifurcating
solution is exchanged from SPI towards RIB.

2.1.2. Stable connection RIB – wTVF. Large modulation amplitudes  not only transfer stability
between two primary bifurcating solutions, from SPI towards RIB (cf Fig. 2) but they can even further sta-
bilize the whole bifurcation branch connecting RIB with TVF via wTVF [44, 45].

To see this phenomenon, Fig. 3 illustrates the stable (solid lines with closed symbols) and unstable
(dashed lines with open symbols) bifurcation branches of TVF (blue circles), SPI (red triangles), RIB
(green lozenges), and wTVF (black squares) versus Rei in absence of any magnetic field  (a) and
at large modulation amplitudes  (b), respectively. Corresponding parameters are also indicated by
two arrows (a) and (b) in the phase diagram of Fig. 7. Shown are (a) the modal kinetic energy

 (where um ( ) is the mth (complex conjugate) Fourier

mode of the velocity field) and (b) the mode amplitudes .
The bifurcation scenario in absence of any magnetic field (1.3) was discussed before and is here mainly

presented as reminder and comparison. For detailed description we refer to the earlier work [45]. In short,
with decreasing Rei stable wTVF bifurcate secondarily out of TVF, which then lose their stability. With the
wTVF approaching the unstable RIB branch, the wTVF become unstable and “jump” up towards the only
stable SPI branch [44, 45] (indicated by vertical arrows in Fig. 3 (1)).

For large modulation amplitudes  at a first glance the bifurcation scenario looks qualitatively
very similar, while it is moved to greater Rei due to the former discussed stabilization effect of a modulated
field. However, more crucial is the fact that all the solutions move up in complexity (by one dimension)
due to the external forcing introduced by the modulated magnetic field (see below). Further significant
difference is the fact that for  no “jump” appears and instead the wTVF branch connects directly
to RIB and transfers the stability from one to the other (Fig. 3b).

In absence of any magnetic field, the modal kinetic energy  for the different solutions SPI, RIB,
and TVF shows a convex behavior with increasing Rei, while  at the onset of TVF being greater than
the one for SPI and RIB (at the same Rei). As to expect,  for wTVF is slightly greater than for (unsta-
ble) TVF, due to the more complex f low dynamics, with additional helical contributions. Qualitatively, for
large modulation amplitude  the variation of  with Rei is very similar. However, the curves for the
different solutions are less convex and especially at the onset they show mainly linear behavior. Further
the energy  for the two helical solutions SPI and RIB lies above the two toroidally ones TVF and wTVF.

2.1.3. Flow characteristics. Following the wTVF bifurcation branch from TVF towards the stable RIB
branch one observes that the f low dynamics shows an increase in waviness (see Fig. 4 (2, 3, 4)), i.e., the
amplitude in the helical modes  increases while the corresponding one in the azimuthal dominant
modes  continuously decreases (Fig. 3b). At some point the helical modes  (Fig. 3a) even become
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Fig. 3. Bifurcation diagrams for different vortex structures versus Rei for (1)  and (2)  (cf. arrows in Fig. 7).
Full (dashed) lines with filled (open) symbols refer to stable (unstable) solutions. Shown are (a) modal kinetic energy 
and (b) dominant radial f low field amplitudes  at mid-gap for TVF , SPI , RIB

, and wTVF. Characteristic feature for the wavy solution is  and  while .
(i–iv) indicate parameter sets for which flow visualizations are shown in Fig. 4.
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greater than the toroidal one. This holds for both scenarios, either if RIB are stable or unstable. With
decreasing  the vortex tubes within the azimuthal wTVF shrink together at distinct azimuthal positions
( ) (Fig. 4 ). Eventually, when  vanishes the vortex tubes disconnect resulting in RIB. To
highlight the direct connection of wTVF and RIB branches Fig. 3(2b) also includes the modes (0,±2);
while for  an according “jump” appears to zero (as (0.±1)) when transition towards SPI, for

 the mode smoothly continuous (no jump) from wTVF to RIB.

2.1.4. Increasing in complexity. To quantify the effects introduced by the field modulation ampli-
tude , Fig. 5 illustrates time series and the corresponding power spectral density (PSD) for the global
measure  and the local measure  of different f low states as indicated. The PSD for
TVF (Fig. 5 ) highlights best the external field induced modulation frequency , equally for the global
quantity  and the local quantity . While classical TVF is a time independent stationary fixed point
solution, here the time-modulated magnetic field renders TVF to be a limit cycle and therefore raises it
one step in the hierarchy of complex solution. Thus, the PSD for TVF shows classical synchronous
response [55]. For here considered field modulation frequency  the resulting frequency fH

appearing in the limit cycle solution of TVF is  , which is equivalent to
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Fig. 4. Flow visualization of different stable f low structures along the RIB – wTVF connecting branch appearing with
variation in Rei. Snapshots of (1) RIB at , (2) wTVF at ,  wTVF at , and  wTVF at 
(corresponding parameters are indicated by vertical lines (i)–(iv) in Fig. 3). Shown are (a) Fourier spectrum ,
(b) isosurfaces of  [red (dark gray) and yellow (light gray) colors correspond to positive and negative values, respectively,
with zero specified as white], (c) the radial velocity  on an unrolled cylindrical surface in the annulus at mid-gap
[red (yellow) color indicates in (out) f low], and (d) vector plot  of the radial and axial velocity components
(including the color-coded azimuthal velocity ).
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the modulation period . Similarly, also SPI and RIB, the classical limit cycle solutions (1-
torus), raise to a more complex solution type. They become quasi-periodic solutions (2-tori) due to the
intrinsic field induced frequency . SPI and RIB (Fig. 5 ) share the main frequency ( , )
characterizing them as modulated rotating waves; note classical SPI and RIB are rotating waves, respec-
tively. These are both the examples of quasiperiodic response [55]; for SPI the ratio

, while for RIB . The modulation due
to the time-dependent field is best visible in the corresponding time series of the local measures  (insets
in Figs. 5 (2b, 3b)). The corresponding PSDs of  show all non-linear superposition of these two fre-
quencies, while PSDs and time series of  as global measure are much simpler. Although having almost
identical frequencies, the peak in the PSDs for  is much smaller than for  which results from the
fact that RIB are standing waves in the axial direction, while SPI are also axial propagating. For wTVF
(Fig. 5 (4)) the time series of  are very similar to RIB with the greater range and corresponding PSD
shows a ratio about  ( ). In contrast to RIB, 
does not appear in the PSD of the global quantify , only in the PSD of the local quantity . This
results from the different nature of wTVF and SPI. wTVF is basically a TVF with azimuthal (helical) mod-
ulation, while RIB is a superposition of two pure helical SPIs with opposite winding direction but the
same frequency .

τ = 0.0628H

ΩH (2,3) SPIf RIBf
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Fig. 5. Time series and power spectral density (PSD) of different f low structures with Rei as indicated. PSD of  
and   [ ] for (1) TVF (unstable) at ) with 
( ), (2) SPI at  with  ( ), (3) RIB at  with

 ( ), (4) wTVF at  with . Insets show time series of (a) , and
(b)  [red (gray)],  (black), respectively. Parameters are also indicated in Fig. 7
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Fig. 6. (a–d) Phase portraits in  plane and (e, f) phase space dynamics in  of TVF, SPI, RIB, and
wTVF for Rei as indicated on  plane.
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In order to visualize the change and evolution in f low dynamics with variation in Rei, Fig. 6 illustrates
the phase portraits of the different solutions TVF, SPI, RIB, and wTVF appearing along the transforma-
tion path over the  plane. In the  plane TVF solutions come to lie on the diagonal 
line, i.e., topologically speaking this represents a degenerated limit cycle. However, the 3D visualization
of  (Figs. 6e, 6f) uncovers the limit cycle characteristic of TVF, which becomes more and
more pronounced with increasing .

Both, SPI and RIB representing modulated rotating waves and modulated standing waves, respec-
tively, are symmetrically arranged with respect to the diagonal . With increasing Rei, i.e., becom-
ing more supercritical a larger area in the phase space  is explored without any qualitative changes.
While classically SPI and RIB are periodic limit cycle (1-torus) solutions, the additional time-dependent
forcing increases their dimension by +1 which means that they appear now as quasi-periodic solutions,
i.e., on a 2-torus invariant manifold. The insets in Figs. 6a–6d show the corresponding two-dimensional
Poincaré sections  at  (marked by gray lines in  space), which results in closed
circles for SPI, RIB, and TVF. With increasing Rei the phase portraits for all solutions SPI, RIB, and
wTVF explore a wider range in the phase space , while wTVF moves towards greater values of 
(towards top right in Figs. 6a–6d) and SPI moves in opposite direction to smaller values of  (towards
bottom left in Figs. 6a–6d). Thereby all symmetries remain in place.

The TVF branch remains two-dimensional, preserving the reflection symmetry about the mid-plane.
However, this symmetry is broken for the other solutions, SPI, RIB, and wTVF, which preserve a more
complex shift reflection symmetry, that renders them to be fully three-dimensional.

2.2. Phase Diagram

As discussed previously (Fig. 2), an increase in the modulation amplitude  stabilizes the system,
i.e., the different instabilities appear at greater values of the control parameter Rei. However, the magni-
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Fig. 7. Phase diagrams.
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tude of this effect on the primary bifurcation thresholds is different for SPI/RIB and TVF. For SPI/RIB
the stabilization of the CCF basic state can be quantified with an approximate power law according to

, with ) (Fig. 7). A similar stabilization effect was
observed for static magnetic fields [22–24]. However, for TVF the variation (with ) under modulated
fields is more complex and cannot be approximated by such a simple quadratic formula. This is congruent
and fits with the former described stronger modifications of the TVF bifurcation branches itself (Fig. 2).

For parameters in Fig. 7 the maximum stability enhancement in Rei is about 14.6% for SPI/RIB and
16.6% for TVF, comparing the system in absence of any magnetic field with alternating magnetic field at
( ).

Together with increase in  and stabilization of the CCF basic state also the region (F) of wTVF
shrinks in range of Rei, which will completely disappear, when the primary bifurcation thresholds for SPI
and TVF will intersect (cf. [45]) for greater  (out of here presented parameter range).

The thresholds for SPI and RIB are identical [2, 45, 54], while RIB are mostly unstable at onset. While
for  SPI appear stable and RIB are unstable at onset, the opposite holds for .
Crossing in the phase space from region F to C2 one finds the stable connecting branch wTVF–RIB
(Fig. 3 ), while from region F to C1 wTVF losses stability and a “jump” bifurcation [44, 45] towards SPI
(Fig. 3 ) appears.

To summarize, in the terms of stability the system reacts to an alternating modulation of the magnetic
field like to an increase in the magnetic field strength in the static case. This holds for all solutions, SPI,
RIB, and TVF, while the effect, i.e., the magnitude of stabilization is strongest for SPI/RIB.
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Table 1. Various regions, labeled A–D, as presented in the ( ) phase space diagrams (Fig. 7), including their
stability properties: stable (s), unstable (u), non-existent (–).

Region A A1 A2 C1 C2 D E F

TVF – – – u u s s u
SPI s u s s s u s s
wTVF – – – – – – – s
RIB u s s u s u u u

, ,Re ,i c z MS
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SUMMARY
In summary, we have elucidated the consequences onto the f low dynamics of a ferrofluid subject to

modulated magnetic field by numerical solutions of the ferro-hydrodynamical equation of motion. There-
fore, we considered the Taylor –Couette geometry with counter-rotating cylinders. We showed that mod-
ulated magnetic fields stabilize the CCF basic state (moving the bifurcation thresholds to greater values of
the control parameters), similar as static fields do. Thereby the stabilization effect, i.e., the magnitude in
up-shift, depends on the corresponding solutions, as well as on the control parameters. However, in gen-
eral the effect seems to be smaller compared with the static case.

The additional frequency  introduced by the modulated magnetic field has crucial effects on the
underlying topology of the f low structures. The main direct result is an increase in flow complexity by mov-
ing all solutions one step up in the hierarchy of complexity. Thus, TVF, the classical fixed-point solution,
becomes a limit cycle (1-torus), while the classical periodic limit-cycle solutions SPI, RIB, and wTVF
become quasi-periodic living on a 2-torus invariant manifold. This observation can be interesting for
future investigations, e.g., applying such a modulating field onto known 3-tori solutions to see and explore
dynamics and potential bifurcation scenarios of potential 4-tori solutions. The latter could get some
insight of a new and/or different route towards turbulence (Table 1).

In the here considered high-frequency modulation  the ratio between both frequencies of
external stimulation and characteristic solution frequencies (wTF, SPI, and RIB) is not a rational number,
resulting in quasiperiodic response. Only for TVF without such a characteristic frequency we detected
subharmonic response. In considering other frequencies , e.g., rational multiples of the characteristic
ones  (or ), interesting resonant phenomena as switching between different modes
can be highly expected [34]. Aside, the modulation frequency  can be also used to control the system
to change between the subcritical and supercritical behavior.

Further we detected that for sufficiently strong modulation amplitudes stability is transferred between
the two on a common threshold primary bifurcating solutions SPI and RIB. In the corresponding param-
eter region we could confirm a transition from stable TVF to stable RIB via stable wTVF. This is important
as in earlier studies the RIB solution was only found unstable resulting in the phenomenon of “jump bifur-
cation” [44, 45] to the SPI solution.

Flow control via modulated magnetic field is highly desired for various applications. Based on the here
presented findings, interesting work will be the study of variation in driving frequency  especially with
focus in regions with coexisting solutions, e.g., SPI and wTVF.
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