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Abstract⎯The laminar-turbulent boundary (edge) separates trajectories approaching a turbulent
attractor from those approaching a laminar one, at least for a finite time. To investigate the f low
dynamics on the edge we carried out direct numerical simulations of transitional pipe f low (here at
Reynolds number Re ∈ [2200, 2800]) in a long computational domain. The studied solution has the
form of a structure localized in space and traveling downstream. Its qualitative characteristics are sim-
ilar to the turbulent puffs observed experimentally in the transitional Reynolds number regime. The
dynamics within the saddle region of the phase space on the separatrix (hyper-surface in pipe f low)
appears to be chaotic. Here, we report such localized solutions on the edge/separatrix for pipe f low
and investigate their correlation to turbulent puffs using a minimal set of (artificial) restrictions to the
states, i.e., the mirror symmetry, and investigate the resulting f low behavior in this subspace. In con-
trast to higher symmetry restricted solutions, here detected solutions on the separatrix turn out to be
quite as complex as the full state solutions. Worth emphasizing that any solutions found in the subspace
are also solutions of the full space and therefore represent physical (symmetric) f low states.
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Turbulence is the rule rather than an exception in nature but our understanding of turbulence is limited
to statistic quantities. Thus the general aim is to disentangle the dynamics close to the onset of turbulence.
In particular, transition to turbulence in pipe f lows is a still remaining open problem of stability theory.
Pipe f low, the f luid f low through an infinite long pipe of circular cross-section, i.e., the Hagen–Poiseuille
flow, is believed to be always stable with respect to infinetisemal perturbations [1] but it is known to
become turbulent in practice [2, 3].

The characteristic parameter to identify the f low is the Reynolds number, defined as Re = UD/ν,
where U is the mean velocity of the f low, D is the pipe diameter, and ν is the kinematic viscosity. Typically,
instabilities in pipe f low are observed for Re greater than 1750 [3, 4]. Within the range Re ∈ [1750, 2700]
perturbations can trigger transition to intermittent turbulent spots usually called puffs, which coexist with
the laminar Hagen–Poiseuille f low [2, 5]. At Re up to 2250 turbulence appears to be localized in the form
of puffs and, as a result, upstream and downstream front speeds of these structures are identical. Increas-
ing Re results in decreasing front speeds. Wygnanski et al. [6] introduced the notation of “an equilibrium
puff” (for 2100 < Re < 2300) at which parameters (dimensions and Re fixed) do not change in the course
of its motion in the pipe. Meanwhile for Re < 2100 such turbulent puffs may spontaneously disappear, or
for Re ≥ 2300 they become destabilized either experiencing a splitting which results in higher number of
puffs in the pipe or expanding its axial extension leading to long intermittent structures, the so-called slugs
[5]. These expanding turbulent slugs result from an increase in the downstream front speed and thereby
deviation from the upstream front speed. While the puff speed decreases, the downstream front speed in
the slug range can increase [7]. The common understanding of this transition from puffs to slugs is a
change from excitability to bistability. The works by Barkley et al. [7] provided deeper insight into front
speeds in puffs and slugs, relaminarization statistics in a reduced model [8]. The nature of laminar-turbu-
lent transition has been studied for more than a century. The recent review by Nikitin [9] provides a pretty
detailed overview on this topic, based on theoretical, experimental, and numerical investigations of f lows
and turbulent structures in a round pipe at transition Reynolds numbers.
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Fig. 1. (a) Schematic representation of the state space of transient turbulence in pipe f low. Laminar f low state is an attrac-
tor for which, with increasing Re, its basin of attraction reduces. The edge of chaos separates such trajectories which either
relaminarise or become turbulent but at the same time is wrapped up into turbulent saddle [23, 35] allowing an unwinding
route to the laminar state. (b) Dynamics of pipe f low around the edge for Re = 2250. Temporal evolution of the kinetic
energy E3d (of three-dimensional Fourier modes) is monitored. The thin magenta (solid) lines correspond to f low trajec-
tories that become turbulent, whereas the blue (dashed) lines show trajectories that relaminarise. The thick solid line indi-
cates the edge-trajectories that hang around the edge of chaos, i.e., they neither go turbulent nor relaminarise. A, B, and
C indicate parameters for which snapshots of isosurfaces are presented in Fig. 3.
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The dynamical system approaches suggest that invariant solutions of the Navier–Stokes equations,
such as traveling waves (TWs) [10–12] and unstable periodic orbits in pipe f low, act as building blocks of
the disordered and chaotic dynamics [13, 14]. Thus turbulence can be understood as a “walk-through”
(Fig. 1a) of the field of invariant solutions [14, 15]. One most prevailing view is that a chaotic attractor may
characterize turbulence whereby it is believed that one can construct its skeleton [16] from such invariant
solutions of Navier–Stokes equations.

Identifying turbulent puffs as a structural unit of turbulence they can be understood as precursors of
fully turbulent dynamics, which suggests them an interesting hydrodynamic object. But unfortunately
their real dynamics is quite complex and uncertain. since the processes involved are stochastic, and the
individual trajectories follow each other in a random manner. Therefore the main idea is to obtain some
information from an analysis of simpler structures. Using edge-tracking techniques [13, 17–19] such solu-
tions arise on a separatrix in the phase space between the both distinguishable domains of attraction, either
the laminar and turbulent f low regimes. What kind of (relative) periodic orbit identifies the edge state may
depend on the presence of certain spatial symmetries, e.g., TW for rotational or mirror + shift-reflect
symmetry [10, 11, 20]. These edge states, having some qualitative properties of a turbulent puff, are time-
periodic in the reference frame traveling along the pipe with a constant velocity. Their overall simpler
structure makes it possible to perform a detailed investigation of the properties. It has been shown that
such edge states not only appear between laminar and turbulent dynamics in pipe f low [20, 21] they also
intermediate between them [22]. Chantry et al. [23] observed the edge not to be an independent dynam-
ical structure, instead it is a part of a chaotic saddle, wrapped around turbulence-generating structures.
Lozar et al. [24] confirmed the existence of the edge state in laboratory experiments and found that these
states govern the dynamics during the decay of turbulence underlining its potential relevance for turbu-
lence control. Further adapting the concept of the edge to the case of a spatially developing Blasius bound-
ary layer, Beneitez et al. [25] reinterpretated the edge as a manifold dividing the state space between bypass
transition and classical transition as two main types of boundary layer transition. Aside the edge plays a
crucial role in designing optimal perturbations and control methods [26, 27].

However, as studies regarding turbulent dynamics are computationally expensive, various restrictions
have been applied. First and most common is the use of short domains (short pipes), which results in the
observations of various invariant solutions. The simplest are exact TWs [10–12, 20]. The common prob-
lem of these studies regarding TWs is the fact that numerical simulations extend spatially for only a few
pipe diameters. Thus these solutions are incapable of explaining either large-scale intermittence or local-
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LOCALIZED TURBULENT STRUCTURES IN LONG PIPE FLOW 213
ization phenomena. Aside these, the next level of complexity in the hierarchy of invariant solutions are
modulated TWs and relative periodic orbits (RPOs) [28]. Being restricted to short domains, these studies
lack the most important experimental observation of localization.

Sufficiently large domains allowing for such localization, which has been observed in TWs and RPOs.
were also considered but at cost of higher symmetry restrictions. Most commonly diametral symmetry
and π-periodicity were applied to limit the numerical costs and/or to make simulations feasible at all. Avila
et al. [13] observed that under such restrictions solutions on the separatrix appear as RPOs having the form
of structures localized in space with a time-periodic behavior in a co-moving frame of reference. This is
an indication that they contain mechanisms that control the dynamics of turbulent solutions. The works
by Nikitin and Pimanov [29, 30] present a detailed analysis of solutions on the separatrix with respect to
the mechanisms responsible for their self-maintenance. They revealed the nonlinear mechanism of the
onset of streamwise vortices to be responsible for sustainment of near-wall streaks. Worth to point out that
that the relative simplicity of the solutions is only detected in the considered symmetry subspace, where
solutions appear to be RPOs. Despite the fact that all these works provide the deeper insight in the f low
dynamics, they miss the fact that in the real, full space the edge is found to be chaotic [21, 22, 31, 32].

This work is focused on this point. Avoiding such full space complexity [31, 32] we identify the solution
set underlying the chaotic dynamics using a small/minimal set of symmetry restrictions (only reflection
symmetry) to mirror the real world scenario as close as possible. The edge states, followed by edge track-
ing, presented here are asymptotic states that are located at the laminar-turbulent boundary.

1. NUMERICAL METHODS

The incompressible f low of a Newtonian f luid is described by Navier–Stokes equations, which can be
rendered dimensionless. Here we use the following characteristic scales: the lengths are non-dimension-
alized by D/2 and the velocities are non-dimensionalized by 2U. Thus, we obtain

(1.1)

The only governing parameter is the Reynolds number Re. The no-slip boundary condition enforces
u = 0 on the walls and we choose to impose periodic boundary conditions in the streamwise direction,
such that localized structures in sufficiently long pipes are fully representative of the infinite domain case.

Numerical simulations are carried out by means of a hybrid spectral/finite-difference code [28, 33, 34]
formulated in the cylindrical coordinates (r, θ, z) The method ensures a constant mass f lux through a pipe,
whose axial periodicity we fix at Λ = 40D.

Unless otherwise stated, the dynamics are deliberately constrained to be reflectional symmetric with
respect to the diametral plane in order to render the problem more tractable

(1.2)

which inhibits rotations about the pipe axis, while u, , and w are the velocities in the radial, azimuthal,
and axial directions, respectively. No other symmetries are explicitly enforced but they may arise sponta-
neously during the simulations.

Sufficient convergence is secured by employing high spatial resolutions of up to M = ±16 Fourier
modes in the azimuthal direction (for θ ∈ [0, π]), N = 64 compact finite-difference points in the radial
direction, and K = ±17 × Λ/D Fourier modes in the streamwise direction. This code and resolution pro-
vided in the past excellent quantitative agreement with experiments regarding very subtle turbulent puff
properties such as lifetime statistics [19]. Transitional dynamics on the laminar-turbulent boundary were
computed with a time evolution code (second-order predictor-corrector method with the time step ∆t =
0.0025) and applying the edge-tracking refining technique [17, 21]. The procedure is as follows: applying
a sufficiently strong localized disturbance to the laminar f low, which then evolves into a turbulent puff.
gives the first initial condition . This preliminarily found turbulent solution  is then used in the
iteration procedure of calculating the limiting solution on the separatrix. Therefrom the new initial con-
ditions are obtained subsequently by rescaling the amplitude of this puff (with subtracted laminar para-
bolic f low): vα = vlam + α(vpuf,f – vlam), α ∈ (0, 1), where vpuf,f and vlam are the velocity fields of the puff
and the laminar f low, respectively.

∂ + ⋅ ∇ = −∇ + ∇ ∇ =21/Re , 0.t p uu u u u

θ = − −θv v( ) ( ) (:  , ,  , , , , , )( , , ,    )u w r z t u w r z tS

v

vpuf,f vpuf,f
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Fig. 2. Streamwise velocity Uc along the pipe centerline with a single structure present. Top: an edge state (ES). Bottom:
a turbulent puff (TS) at Re = 2250. Flow is in the positive x direction, from left to right. Vertical lines with letters (a−e)
indicate positions of cross sections presented in Fig. 4.
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2. RESULTS
2.1. Edge States—Solutions on Separatrix

The edge-trajectory is bounded by two neighboring but qualitatively completely different trajectories,
as one relaminarizes, while the other leads to turbulence. Figure 1b illustrates some trajectories including
the edge (solid thick) and those which have either corresponding turbulent bounding (magenta thin lines)
or relaminarizing (dashed blue lines) orbits for Re = 2250 and about 1600 time units. The edge-trajectory
is obtained by applying the edge-tracking algorithm [13, 17, 31]. Worth mentioning that it is these notice-
able differences in the corresponding energies of the edge and turbulent states that make it ultimately pos-
sible to track the edge trajectory with the shoot and bisection method [19, 21].

In contrast to higher symmetry restricted subspaces (e.g., including additional π-rotation symmetry)
the edge trajectory does not show any sign to evolve into a kind of ordered, periodic or quasi-periodic
oscillation, e.g., TWs [10, 11] or RPOs [13, 29, 36] (at least for times t(D/U) up to 2000). Instead it does
not settle on a simple invariant solution, which suggests that it remains chaotic, as also detected in the full
space simulations [31]. This confirms the underlying structure of a strange saddle in the phase space.
Which means that the here simplified simulations in reflection symmetric subspace came to the same
result as it was detected in full space transition to turbulence in pipe f low [37]. Both support the conclusion
that the dynamics in the edge does not settle down to a simple periodic or quasi-periodic state. In any case,
the energy of edge trajectories remains well below turbulent levels (Fig. 1b) and therefore distinguishable.

2.1.1. Properties and characteristics of the edge state. Figure 2 illustrates the centerline velocities Uc for
an edge state (ES) and a turbulent puff (TS) obtained by numerical simulation at Re = 2250 (flow from
left to right). Consider the profile for TS (Fig. 2b): a sharp drop is present on the trailing edge/interface.
This is a typical signature of puffs indicating sharp transition from laminar to turbulent f low. This clearly
defined drop has been often used to determine the location of the puff. On the other side, at the leading
edge/interface one observes a gradual increase in velocity corresponding to a slow recovery towards the
laminar velocity.

Away from the localized puff, upstream and far downstream, the centerline velocity Uc approaches two
times the bulk velocity UB, which is the theoretical value for laminar f low. The gradual increase of the cen-
terline velocity on the leading edge makes an exact length definition of the puff challenging. Immediately
FLUID DYNAMICS  Vol. 57  No. 2  2022



LOCALIZED TURBULENT STRUCTURES IN LONG PIPE FLOW 215

Fig. 3. Isosurfaces (uz = ±0.07) of localized edge states (ES) at two moments of tome (a, b) and a localized turbulent state
(TS, puff) (c) (cf. points A, B, and C in Fig. 1) at Re = 2250. Green [yellow] indicates positive [negative] streamwise
velocity. Flow direction from left to right. Only a central, 20D-long region of the pipe is shown.

(a)

(b)

(c)
after the sharp drop in Uc strong velocity f luctuations can be observed. Therein a region has been identified
which shows the characteristics of fully developed turbulence [38].

The basic landmark of TS (Fig. 2, bottom) is shared by ES (Fig. 2, top), which demonstrates that the
properties of localized turbulence can be captured by numerical solutions of Navier–Stokes equations
found on the separatrix. However, there are differences. First of all, the increase in the velocity Uc (steeper
slope) back to laminar f low (Uc = 2) is much faster for ES, which results in an overall shorter axial expan-
sion, i.e., the length of ES (cf. Fig. 5). Secondly, the velocity f luctuations after the drop are less pro-
nounced than in the corresponding puff. However, these f luctuations are clearly visible within the here
used minimal set of symmetries in comparison to earlier works, which considered higher-order symme-
tries (π-rotation + reflection) (Fig. 2 in [13]) with the result that these f luctuations in ES basically disap-
pear. Thus, the here detected dynamics are closer to the full space scenario.

2.1.2. Comparison of edge state vs puff. Figure 3 presents a qualitative comparison the ES at two
moments of time on the separatrix (cf. Fig. 1) with a turbulent puff. The three-dimensional f low fields,
illustrated as isosurfaces of the instantaneous axial velocity, show a qualitative agreement, although the ES
structure remains simpler than that of TS at all times. The common feature of all structures is long regions
of accelerated and decelerated motion close to the pipe wall. Both ES flow fields appear significantly less
complex and show the higher spatial coherence than TS. Aside the smoother iso-surfaces, both the axial
length of edge states and, in particular, that of the leading edge are significantly shorter than that of the
turbulent puff. This results from the previously mentioned slow decrease in the axial velocity on the lead-
ing front and a sharper recovery on the trailing edge for TS. Meanwhile the edge state illustrates a moder-
ate variation in its axial expansion, while maintaining its overall characteristics and shape, as a result of
the chaotic behavior (cf. Fig. 1b) on the edge; (strong variation in streamwise velocity uz and energy E in
time). The trailing edge of the puff shows more complex dynamics with vortical structures that are tilted
inside the volume and tear the streaks apart. The latter is one of the main reasons for the significant
increase in energy within the turbulent puff compared to both ES (cf. Fig. 5a).

The instantaneous snapshots of cross-sectional velocity fields in the (r, θ) coordinates for ES and TS
are presented in Fig. 4. The qualitative similarities between these states (axial positions are indicated by
lines in Fig. 2) feature similar f low characteristics. ES (Fig. 4a) covers most of the dynamics of TS
(Fig. 4b) within a generally smoother structure. The visible small-scale modulations in TS persist and
reflect the intrinsically chaotic dynamics of the vortical structure (lines 2b and 2c). The smaller growth
and more complex dynamics at the leading edge of TS can be visible in Fig. 4 (line 2e).
FLUID DYNAMICS  Vol. 57  No. 2  2022
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Fig. 4. Instantaneous snapshots of cross-sectional velocity fields in (r, θ) at different axial positions as indicated (cf. Fig. 2)
for (1) edge state and (2) turbulent puff at Re = 2250. The in-plane velocity components are indicated by arrows, while
the axial velocity is color-coded (blue for negative and red for positive). The laminar parabolic profile is subtracted. Color
ranges from −0.3U to 0.2U. Maximum in-plane velocity is −0.302U. Red, yellow, and blue indicate the regions, where
the streamwise f low speed is higher than, similar to, or lower than the corresponding parabolic profile.
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2.2. Dependence on the Reynolds Number

We will now consider the case of higher Re for which the pipe turbulence changes and can split and/or
appear in the form of growing slugs [5] instead of equilibrium puffs. Statistical properties are used to over-
come the fact that all analyzed states are chaotic. Therefore averaged values over long time series (t(D/U )
about 1500 time units) are used instead of the properties at given time instants.

Figure 5a shows the axial distribution of the total modal kinetic energy E3d of different edge states and
the corresponding turbulent state for Re as indicated. The puff at Re = 2250 shows the typical energy dis-
tribution: on one side a large/wider extended leading edge (front), illustrated by a slow and mild exponen-
tial energy decay in the downstream region. On the other side a sharp trailing edge (rear), characterized
by a fast exponential energy drop in the upstream region. Compared to TS, the corresponding edge state
at the same Re = 2250 is obviously shorter. ES is basically characterized by extended interfaces in both
leading and trailing edges. Moreover, the maximum energy and, particularly, the averaged energy are
clearly lower for ES. With increasing Re the basic shape of ES remains the same with a slight axial expan-
sion of the peak energy region. At the same time, the energy in the leading edge decreases slower moving
toward the typical shape of a turbulent puff. Meanwhile, with increasing Re the maximum values in E(z)
for ES remain basically at the same level, while the minima slightly increase.

Figure 5b illustrates the variation with Re of the time-averaged energies corresponding to the edge and
turbulent states, asymptotically approached by the edge and turbulent trajectories (cf. Fig. 1). The edge
state energy does not show any noticeable variation within the explored Re range. The turbulent energy
level is not only higher for all Re, compared to the one associated to the edge, it also continuously
increases with greater Re. Moreover, the energy of the turbulent regime experiences a noticeable increase
between Re = 2400 and Re = 2500. This is the result of the unbounded growth of the turbulent structures
into a slug in this regime, which ultimately fill the entire domain. This can be notified in Fig. 5c illustrating
the axial length lz of the structures. Here lz is chosen as the minimal axial extent containing 98% of the
energy component (Fig. 5a). For Re ≥ 2500 the turbulent structures fill the entire domain (40D).

SUMMARY
It is shown that numerical solutions of Navier–Stokes equations with a minimal set of (artificial) sym-

metry restrictions (here only reflection symmetry) allow to cover the key characteristics of the f low
dynamics in the transitional regime toward turbulence in pipe f lows. In order to determine this transition
threshold in terms of the perturbation amplitude we investigate the edge of chaos/separatrix which divides
the perturbations decaying toward the laminar f low from those which eventually trigger turbulence. The
discovered edge states share the structural properties and the spatial complexity with turbulent puffs.
Moreover, the separatrix appears to be chaotic, as it has been detected in full space simulations. This is an
FLUID DYNAMICS  Vol. 57  No. 2  2022



LOCALIZED TURBULENT STRUCTURES IN LONG PIPE FLOW 217

Fig. 5. Statistical properties of ESs and TSs as functions of Re. (a) Energy E3d based on the axial position z and measured
in the units of the radius. (b) Time-averaged energy E3d. (c) Axial length lz of ESs and TSs within the explored Re range.
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important observation as it clearly overcomes the key problematic in subspaces with higher symmetry
restrictions, e.g. the diametral symmetry and π-periodicity [13, 29, 30], where the separatrix is found to
be time- (quasi-) periodic. To our knowledge, it is the first time that solutions with only reflection sym-
metry has been reported in pipe f low. The here detected solutions turn out to be similarly complex as solu-
FLUID DYNAMICS  Vol. 57  No. 2  2022
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tions without additional restrictions. Although this observation may provide only few new opportunities
for analysis in comparison with the full space solutions, it clearly highlights the importance of awareness
of the respective subspace, which may strongly change and/or simplify the dynamics.

The here presented results under reflection symmetry are in good agreement with previously reported
localized edge states in pipe f lows with no symmetry [31] and therefore provide a great first step to get an
easy and fast idea of the dynamics before using economic and time-expensive simulations. Within the here
studied transitional regime Re ∈ [2200, 2800] the edge states can provide more insight into the transition
to turbulent dynamics than the study of already fully turbulent states in pipe f lows. Aside, with increasing
Re an expansion of turbulent puffs into slugs and therefore the loss of localization becomes crucial. Here,
greater domains and, together with this, higher computational efforts are necessary to capture these pro-
cesses. Clearly, future work is required, but knowing about the similarity of the f low dynamics and struc-
tures obtained in the reflection symmetry subspace and the full space can surely help with respect to one
of the main challenging problems regarding the study of turbulent motion. Such simulations are typically
highly numerically expensive in both the computation time and the computation power.
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