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Abstract
This work investigates the transition between different traveling helical waves
(spirals, SPIs) in the setup of differentially independent rotating cylinders.
We use direct numerical simulations to consider an infinite long and periodic
Taylor–Couette apparatus with fixed axial periodicity length. We find so-called
mixed-cross-spirals (MCSs), that can be seen as nonlinear superpositions of
SPIs, to establish stable footbridges connecting SPI states. While bridging
the bifurcation branches of SPIs, the corresponding contributions within
the MCS vary continuously with the control parameters. Here discussed
MCSs presenting footbridge solutions start and end in different SPI branches.
Therefore they differ significantly from the already known MCSs that present
bypass solutions (Altmeyer and Hoffmann 2010 New J. Phys. 12 113035). The
latter start and end in the same SPI branch, while they always bifurcate out
of those SPI branches with the larger mode amplitude. Meanwhile, these only
appear within the coexisting region of both SPIs. In contrast, the footbridge
solutions can also bifurcate out of the minor SPI contribution. We also find they
exist in regions where only one of the SPIs contributions exists. In addition,
MCS as footbridge solution can appear either stable or unstable. The latter
detected transient solutions offer similar spatio-temporal characteristics to the
flow establishing stable footbridges. Such transition processes are interesting
for pattern-forming systems in general because they accomplish transitions
between traveling waves of different azimuthal wave numbers and have not
been described in the literature yet.

(Some figures may appear in color only in the online journal)
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Nomenclature

We use the following abbreviations for the different flow states discussed in this paper:

CCF circular Couette flow
TVF Taylor vortex flow
SPI spiral vortex flow
R-SPI right-winding SPI
L-SPI left-winding SPI
CSPI cross-spiral
RIB ribbon
MCS mixed-cross-spiral
MRIB mixed-ribbon

We denote R-SPIs with red triangles (H), L-SPIs with orange triangles (N), RIBs with
green lozenges (�) and MCSs with maroon squares (� ).

1. Introduction

The flow of a fluid in between rotating cylinders is a prototypical example for pattern
forming systems. Since the first studies by Taylor (1923) numerous structures with different
topology appearing in such a system have been studied extensively during recent decades,
experimentally, theoretically, as well as numerically (Jones 1984, DiPrima et al 1985,
Andereck et al 1986, Iooss 1986, Nagata 1986, Golubitsky et al 1988, Langford et al 1988,
Chossat and Iooss 1994, Tagg 1994, Hoffmann and Lücke 2000, Marques and Lopez 2002,
Altmeyer and Hoffmann 2010). Various solutions and bifurcation scenarios just as transitions
between fully developed states have been documented.

Here we investigate flow structures under Taylor–Couette geometry (Tagg 1994), where
the basic state is given by the circular-Couette flow (CCF). To that end we consider an
infinitely long and periodic Taylor–Couette apparatus with fixed axial periodicity length.
These reductions result in limitations. Either comparison with experimental results is difficult
and phenomena such as Eckhaus instabilities, concerning bifurcations between states with
different axial wavelength are excluded.

The most important critical states are both primary bifurcating structures, the rotationally
symmetric Taylor vortex flow (TVF) with toroidally closed vortices and the oscillatory spiral
vortex flow (SPI) with open, helicoidal vortices. It follows that the latter occurs as symmetry
degenerated, oppositely traveling, right-winding (R-SPI) or left-winding spiral (L-SPI) being
mirror images of each other (Hoffmann and Lücke 2000). They are determined by their
helicity and azimuthal wave number or, alternatively, by their pitch (Altmeyer and Hoffmann
2010).

One typical class of transitions is between these two topological different structures that
are mediated by secondarily bifurcating states, namely the wavy Taylor vortices and wavy
spirals (Swinney and Gollub 1981, Swift et al 1982, Jones 1984, Golubitsky et al 1988,
Hoffmann et al 2009).

On the other hand transitions between helical SPIs with the same azimuthal wave
number but different pitches was observed to be performed via secondarily bifurcating cross
spirals (CSPIs) (Pinter et al 2006). Herein the bifurcation goes over the solution of primary
bifurcating ribbons (RIBs) (Chossat and Iooss 1994, Pinter et al 2008). These can be seen as a
nonlinear superposition of two mirror-symmetric SPIs, i.e. L- and R-SPIs with same azimuthal
wave number and identical mode amplitudes but opposite helicity (i.e. opposite pitches ±p,
equation (7)).
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We here investigate mixed-cross-spirals (MCSs) which offer a direct way to bridge SPI
solution branches with different helicities and different pitches (i.e. different azimuthal wave
numbers) without making a detour over any other primary bifurcating solution. Therein a
special case is the appearance of MCSs as bypass solution. These present a way to connect
the same SPI solution branch (starting and ending in it) via secondary forward bifurcations
as already discussed in Altmeyer and Hoffmann (2010). Moreover, such bridge solutions
that connect states with same helicity but different azimuthal wavenumber (i.e. pitch) were
investigated in Deguchi and Altmeyer (2013).

While theoretically all combinations of azimuthal wave numbers are possible for MCSs
to establish footbridges, numerically we only observed selected combinations. We find
these footbridge solutions exist as stable and unstable flow states. To find several of these
solutions we restricted our code to subspaces due to permission of only selected modes. Note
that any solution that is stable in any selected subspace may be unstable in full space or
another subspace with less constrictions. Moreover, any solution found in subspace is also a
physical solution. Exploiting the confinement, we also find MCSs appear as short-live-time
transient flows due to an externally applied artificial generation scenario and then let fall
some constrictions. For example, first just allow to a subspace for SPI and then relax some
confinement to allow to a subspace of MCS.

Presented processes here are interesting for pattern forming systems in general because
they accomplish transitions between traveling waves of both different azimuthal wave
numbers and propagation direction. In principle the MCSs can be seen as nonlinear
superpositions of two SPIs with different helicity and different azimuthal wave number M .
Thus, such transitions mainly involve the Fourier mode subspaces of the participating SPI
structures.

The paper is roughly subdivided into four parts. Following the introduction, we briefly
present the system, the numerical methods in section 2 and classification of the investigated
solutions in section 3. This is followed by the main part in section 4 and section 5 elucidating
the bifurcation scenario and spatio-temporal behavior for MCSs establishing footbridge
solutions. Here we also illustrate the similarity between both findings, stable and transient
MCSs, in which the latter were observed as short-live-time flow due to an artificial generation
scenario. Finally, section 6 provides conclusion and discussion of the main results.

2. System and theoretical description

Consider the flow driven in the annular gap between two independently rotating cylinders of
length L . The inner cylinder of radius Ri rotates at angular speed �i and the outer cylinder of
radius Ro rotates at angular speed�o. The fluid in the annulus is considered to be Newtonian,
isothermal and incompressible with kinematic viscosity ν. Using the gap width Ro − Ri as the
length scale and the radial diffusion time (Ro − Ri)

2/ν as the time scale, the non-dimensional
Navier–Stokes equations governing the flow read

∂t u + (u · ∇)u = −∇ p + ∇
2u, ∇ · u = 0, (1)

where u = (u, v, w) is the velocity in cylindrical coordinates (r, θ, z).
In the present work, we assume axial periodic boundary conditions, determining the axial

wave number that we shall fix, k = 3.927, and the radius ratio Ri/Ro is also fixed to 0.883. The
selection of this axial wave number is motivated due to experimental findings, in particular
for the here chosen radius ratio. Under these conditions the system is governed by only two
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Table 1. Isotropy subgroups of discussed fluid states.

Solution Isotropy subgroup

CCF SO(2)× O(2)
TVF SO(2)× Z2(κ)

SPI S̃O(2)×1
RIB Z2(κ)⊕ Z2(π, π)

MCS, CSPI ŜO(2)×1
MRIB Z2(κ)⊕ Z2(π, γ )

κ ∈ O(2) is the flip z → −z along the cylindrical axis,
α ∈ SO(2) is a rotation in the azimuthal plane,
1= {(α,−α) ∈ SO(2)},
S̃O(2)= {(ψ,−ψ) ∈ O(2)× SO(2)},
ŜO(2)= {((ψ,−ψ), (β,−β)) ∈ O(2)× SO(2)}

parameters, the inner and outer Reynolds numbers

Re1 =�i Ri(Ro − Ri)/ν and Re2 =�o Ro(Ro − Ri)/ν. (2)

Likewise the boundary conditions at the cylinder surfaces are no-slip, with u(ri, θ, z, t)=

(0, Re1, 0) and u(ro, θ, z, t)= (0, Re2, 0), where the non-dimensional inner and outer radii
are ri = Ri/(Ro − Ri) and ro = Ro/(Ro − Ri). Throughout this paper Re1 is hold fixed either
to 200 or 370 and Re2 varies within [−900; 400].

The governing equations and the boundary conditions are invariant under time translation
φτ , arbitrary rotations Rα about the axis, and translation Tβ and flipping Kz along the
cylindrical axis, generating the combined symmetry group 0 = SO(2)× O(2). The actions
of these symmetries on the velocity are

φτ (u, v, w)(r, θ, z, t)= (u, v, w)(r, θ, z, t + τ), (3a)

Rα(u, v, w)(r, θ, z, t)= (u, v, w)(r, θ +α, z, t), (3b)

Kz(u, v, w)(r, θ, z, t)= (u, v,−w)(r, θ,−z, t), (3c)

Tβ(u, v, w)(r, θ, z, t)= (u, v, w)(r, θ, z +β, t). (3d)

Note, that this paper only discusses the infinitely long and periodic Taylor–Couette apparatus;
there are some appreciable limitations: first of all it neglects all axial endwall effects and thus
makes difficult the comparison with experimental results. Moreover, due to the fixed axial
periodicity, phenomena such as Eckhaus instabilities concerning bifurcations between states
with different axial wavelength are also excluded. Nevertheless, the solutions considered
in the paper may play an important role in real experiments, depending on other system
parameters such as radius ratio, aspect ratio and kind of endwalls used.

One can distinguish each of the different states described in this paper by their isotropy
subgroups; that is by SO(2)× O(2) which leave the given state invariant. In table 1 we list
the different isotropy subgroups for the main fluid states discussed in this paper following the
notation in Golubitsky and Stewart (1986).

To the steady solutions, the CCF is invariant under all symmetries. TVF is invariant under
all rotations SO(2) and flips along the cylindrical axis Z2(κ).

To the periodic solutions, these all present rotating waves and thus they are invariant
under 1 since a change of phase may be compensated for by rotating the cylinder. The SPI
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is invariant under S̃O(2); a translation along the cylinder axis may be compensated for by
rotation of the cylinder. RIB is invariant under composing flip Kz with discrete angle rotation
of the cylinder by π . MCS is invariant under ŜO(2); only discrete translation along the
cylinder axis combined with rotation of the cylinder keeps the solution invariant. Finally,
mixed-ribbon (MRIB) differs from RIB due to π 6= γ .

2.1. Numerical methods

Numerical simulations have been done with our code ‘G2D2’ as presented in detail in
Hoffmann et al (2009) which implements a Galerkin–Fourier expansion in two dimensions, θ
and z, and finite differences of second order in r and of first order in t

f (r, θ, z, t)=

∑
m,n

fm,n(r, t) ei(mθ+nkz), f ∈ {u, v, w, p}. (4)

Here, fm,n(r, t) are the amplitudes of the mth azimuthal and the nth axial Fourier mode. Their
variation in the two variables r and t is determined using finite differences. For an adequate
accuracy we choose mmax = 15 = nmax and 31 points in radial direction.

Note that the decomposition (4) allows imposing constrictions during the numerical
calculations by selecting subspaces of the full solutions. In practice this means that all Fourier-
modes not allowed (exist) in the selected subspace are set to zero after each iteration. All
solutions found in a subspace are also solutions of the full Navier–Stokes equations, and
therefore represent physical flow states.

2.2. Characterization

In order to classify the structures, we shall refer to their significant Fourier mode (4) indices
abbreviated with

(m, n) := fm,n ei(mθ+nkz), f ∈ {u, v, w, p}. (5)

The SPI is of special interest as it either presents start and end state for footbridges and also
appears as an ingredient in the the footbridges itself.

SPIs show a combined symmetry under rotation and axial translation or time translation,
where it follows that flow fields do not depend on θ, z, t separately but only on the phase
combination (Pinter et al 2006) 8 := Mθ + K z −ωt such that f (r, θ, z, t)= F(r,8). The
spiral frequencies ω depend on the Reynolds numbers Re1, Re2 and on the azimuthal (M)
and axial (K ) wave numbers. The latter is given by K = ±k, depending on the helicity
of the respective spiral, i.e. K > 0 for (left-winding) L-SPI and K < 0 for (right-winding)
R-SPI. R- and L-SPI, characterized by K = KR, M = MR, ω = ωR and K = KL, M = ML,
ω = ωL, respectively, are mirror-symmetric at mid-height (z → −z), i.e. 8L-SPI(z, θ, t)=

8R-SPI(−z, θ, t). Considering various MR,L > 1, this yields KL = −KR, ML = MR and ωL =

ωR. The frequencies are positive since the spirals rotate into the same direction as the inner
cylinder. This in turn implies that the phase of L-SPI propagates axially upward while the
converse holds for the R-SPI—the location z0(θ) of a particular phase value, say, 8= 0, at a
fixed time t is given by

z0 = −
M

K
θ +

ω

K
t. (6)

Thus, for the reduced axial pitch p of a SPI follows:

p :=
z0(2π)− z0(0)

λ
= −M

k

K
= −sign [K ] M (7)

5



Fluid Dyn. Res. 46 (2014) 025503 S A Altmeyer

which gives the number of axial periodicity lengths being covered while traveling in positive
azimuthal direction along the helicoidal vortex tube once around the cylinder. Hence,
pλ/2π = −M/K is the slope of the lines of constant phase in the (θ, z) plane of an
azimuthally unrolled cylindrical surface.

In this paper, we consider only vortex structures with the same axial wave number k =

3.927. To identify the different flow structures investigated here, we will use a combination
of letters and numbers as follows: e.g. L1-SPI is a left-winding spiral with azimuthal wave
number M = 1 (thus the pitch of it is given by p = −1 (7)) while R2-SPI stands for a R-SPI
with azimuthal wave number M = 2 (thus p = 2), see figure 5. The symbols ‘L1’ and ‘R2’
correspond to the pitch of the SPI. In analogy, we will also characterize the MCS with both
its, major (first) and minor (second) contribution, e.g. L1R2-MCS (R1L2-MCS) stands for
an upward (downward) propagating flow state due to major L1 (R1) contribution, where it
follows that the pattern is modulated due to the downward (upward) propagating minor R2
(L2) contribution.

3. Classification of MCS

Due to the absence of axial symmetry breaking effects, both oscillatory L- and R-SPIs are
degenerated, i.e. L- and R-SPI with different helicity but the same azimuthal wave number
bifurcates at a common threshold. Additionally the so-called RIB bifurcates with the SPIs.
RIBs can be seen as a nonlinear superposition of two mirror symmetric SPIs. In axial direction
they present a standing wave. The common threshold also holds for MCS exchanging major
and minor SPI contributions, e.g. L3R4-MCS and its mirror image R3L4-MCS. So it suffices
to present the results for only one type of the MCSs, the corresponding mirror-symmetric ones
are meant to be included as well.

The Taylor–Couette system exhibits a large variety of possible transitions between
different SPI branches. One of these is organized by the so-called CSPIs which mediate
transition between SPIs with the same azimuthal wave number but opposite helicity, i.e.
opposite pitch ±p (e.g. 2-CSPI in Pinter et al 2008). They can be seen as nonlinear
superpositions of the participating spirals (L2-SPI and R2-SPI). Likewise, the secondarily
bifurcating solutions of MCS can be seen as nonlinear superpositions of SPIs with different
azimuthal wave numbers (e.g. L3-SPI and R4-SPI) and (in general) different helicity. In
principle MCSs can bridge between solutions with either the same or different helicity. In
this paper, we only focus on the latter, establishing footbridges between SPIs with different
helicities. Footbridge solutions between SPIs with the same helical orientation have been
discussed among others in Deguchi and Altmeyer (2013). The situation of bypass solution
branches of MCS which starts and ends in the same SPI have already been investigated
in detail (Altmeyer and Hoffmann 2010). Schematics of MCS that mediate the transition
between SPIs of different M (e.g. L1-SPI ↔ L1R2-MCS ↔ L1R2-MRIB ↔ R2L1-MCS ↔

R2-SPI) are shown in figure 5. Before going into more details of this transition, we will explain
the classification, terminology, some general properties and the most important results of the
first type MCS (bypass). All MCSs are found to bifurcate secondarily out of a pure SPI state
of one of both its contributions, from where they are generated. In the case of bypass solution
there is some special behavior as discussed in detail in Altmeyer and Hoffmann (2010).

MCSs characterize very general flow structures exhibiting a broad class of solutions.
Thus, the solution of CSPI can be seen as a special case of MCS with the same azimuthal
wave numbers but different mode amplitudes. Having equal amplitudes, we define the RIB
solution. On the other side, the same amplitudes but different azimuthal wave numbers
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indicate the so-called MRIB (Altmeyer and Hoffmann 2010). Both, MCS as well as CSPI can
be seen as nonlinear superpositions of oppositely traveling waves with continuously varying
contributions. Thus, CSPIs (RIB) represent a special type of MCS (MRIB). Furthermore, RIB
(MRIB) can be seen as a special type of CSPI (MCS) with equal amplitude contributions from
L- and R-SPI.

To put the present work in the right context, we clarify the naming of the here-
discussed MCSs as footbridges and the differences to the already known ones as bypass
solutions (Altmeyer and Hoffmann 2010). MCSs are built of a nonlinear superposition of
two SPIs with different helicity and pitch. While the bypass solutions bifurcate out and end in
the same SPI branch (therefore the name ‘bypass’), the footbridge solution connects different
SPI branches. Thus, the current study can be seen as a generalization of the older one.

4. Structural properties of MCS

In order to get an impression of the spatial shape of MCS, figure 1 presents either isosurfaces
of the azimuthal vorticity η = ∂zu − ∂tw (a) and horizontal cuts in (r, θ) plane (b) through the
annulus at mid-height of an L3R5-MCS (2), and separate for both its contributions L3-SPI
(1) and R5-SPI (3), respectively. Here, the choice of the L3R5-MCS is motivated by the fact
that the composition of this state by two SPI contributions with difference in azimuthal wave
number 1M = 2 (L3- and R5-) results in significantly better visibility of the setting (instead
for only 1M = 1).

The L3R5-MCS in figure 1 consists of a stronger (major) L3 and a weaker (minor) R5
component obvious in the helical left-winding orientation of the L3R5-MCS. It follows that
the vorticity maxima in both contributions L3 and R5, and therefore their contributions to the
complete MCS structure, differ significantly (see caption for values of η and its maximum and
minimum). The L3 contribution dominates the whole L3R5-MCS structure, and R5 portion
only generates a weak modulation. In this case, the full structure propagates upwards, i.e.
in positive axial direction, due to the major L3 component, whereas the modulation, minor
R5 component, travels downwards (see online available material: movie1.avi and movie2.avi,
available from stacks.iop.org/FDR/46/025503/mmedia). The difference in the azimuthal wave
numbers is visible in (r, θ) plane in figure 1(b). The pure states, L3-SPI and R5-SPI, present
three and five helical pairs of vortex tubes, respectively. Due to the dominance of the major
L3 contribution in the L3R5-MCS, there are also three helical pairs of vortex tubes visible
(figure 1(2)).

For local measures, we will use the azimuthal vorticity on the inner cylinder at two points
symmetrically displaced about mid-plane, η− = η(r1, 0, 0/4, t) and η+ = η(r1, 0, 0/4, t).
Figure 2 shows time series of η±, and their corresponding PSDs for L3R5-MCS (top row), L3-
SPI (middle row) and R5-SPI (bottom row) at Re1 = 200 and Re2 = 0. The time-series of η±

show a ‘simple’ periodic modulation for the pure states, L3-SPI and R5-SPI, respectively. This
results in PSDs that each highlight one single characteristic frequency, ωL3-SPI and ωR5-SPI.
Likewise, the time series of η± for the L3R5-MCS looks more complicated, offering a mixture
of both pure SPI contributions. The corresponding PSD shows both frequencies of the pure
SPI states as dominant ones and various frequencies of its superposition as minor ones. Both
frequencies for left- or right-winding contribution is dominant and depend on various other
system parameters. As already discussed, L3R5-MCS propagates upwards, thus ωL3-SPI is
dominant, whereas ωR5-SPI characterizes the downward directed modulation. But apart from
this, further frequencies appear in the spectrum, due to nonlinear superposition. In detail, these
can be identified as 2ωL3-SPI −ωR5-SPI and ωR5-SPI −ωL3-SPI.

7

http://http://stacks.iop.org/FDR/46/025503/mmedia


Fluid Dyn. Res. 46 (2014) 025503 S A Altmeyer

Figure 1. Isosurfaces (a) of azimuthal vorticity η = ∂zu − ∂rw (isolevels shown for
(a1) ±70 [min,max] = [−250, 250], (a2) ±80 [310,-310], (a3) ±40 [220,-220]) and
horizontal cuts in (r, θ) plane at mid-height (b) of L3-SPI (1), L3R5-MCS (2)
and R5-SPI (3) at Re1 = 200 and Re2 = 0. In axial direction, each isosurface plot
covers one axial wavelength 2π/k. (2) Displays the complete MCS structure and
(1) and (3) depicts the separated contributions of the respective L3-SPI and R5-SPI
component subspaces. Piecewise cuts in (b) are to guide the eye and help to indicate
the symmetry in azimuth. Red (yellow) indicates positive (negative) isovorticity
values. See also online available material movie1.avi and movie2.avi (available from
stacks.iop.org/FDR/46/025503/mmedia).

Figure 3 shows phase portraits of L3-SPI, R5-SPI and L3R5-MCS on (η−,−η+)

and their corresponding two-dimensional Poincaré section for η− on (u, η+), where u :=
u(d/2, 0, 0/2, t). The Poincaré section corresponds to η− = 0. The phase portraits of both
pure SPI clearly indicate the fact that these solutions are limit-cycle solutions. Otherwise the
MCS exist on an other complex topology—a 2-torus. Thus its corresponding Poincaré section
(figure 3(d)) presents a closed circle. For comparison, the two additional indicated points in the
Poincaré section (figure 3(d)) correspond to limit-cycles of L3-SPI and R5-SPI, respectively.

5. Transition between SPIs

In the following, we will first give a brief review of the special case, MCS presenting bypass
solutions bifurcating out and ending in the same SPI branch.
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Figure 2. Time series (a) of η− = η(r1, 0,−0/4, t) and η+ = η(r1, 0, 0/4, t), and their
corresponding power spectral density (PSD) (b) for L3R5-MCS (top), L3-SPI (middle)
and R5-SPI (bottom) at Re1 = 200 and Re2 = 0 (see figure 1).

5.1. MCS as bypass solution

Figure 4 shows a schematic for the appearance of MCS as bypass solution with suitable
control parameter, say, e.g. Re2. Thereby, the azimuthal wave numbers are considered to be
different a 6= b (for a = b see (Pinter et al 2008)). The most important points for all MCSs
found in Altmeyer and Hoffmann (2010) to appear as bypass solution are:

(i) These MCSs start and end in the same SPI branch.
(ii) They only exist in regions, where both SPI contributions exist simultaneously.

(iii) They always bifurcate out and end in that SPI contribution with the larger mode amplitude
(major SPI contribution).

(iv) While theoretically any combination of azimuthal wave numbers are possible,
numerically only selected ones were observed. But note this also holds for MCSs
establishing footbridges (e.g. the theoretical transition from L1-SPI ↔ R2-SPI as
schematically presented in figure 5 could not be found numerically).
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Figure 3. Phase portraits of (a) L3-SPI, (b) R5-SPI and (c) L3R5-MCS at Re1 = 200
and Re2 = 0 on (η+, η−) plane and corresponding two-dimensional Poincaré sections
(d) (u, η+) with η− = 0, u := u(d/2, 0, 0/2, t) (see figure 2).
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Figure 4. Schematics for the bifurcation of vortex flow amplitudes versus a suitable
control parameter, e.g. Re2. SPI and RIB denote non-hysteretic solution branches that
primary bifurcate out of the CCF state. The azimuthal wave numbers are considered to
be different a 6= b. The MCS as bypass solution is indicated by the thick line starting
and ending in the La-SPI solution branch which here gives the major SPI contribution.
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z

L1−SPI L1R2−MCS R2L1−MCS R2−SPI

)5()3( )4()2()1(

R2L1−MRIB

θ

Figure 5. Schematics of several flow structures as indicated and discussed in this paper.
The colored (gray shaded) regions denote radial outflow, u > 0 and the white ones
indicate radial inflow, u < 0, respectively, in the plane of an unrolled cylinder surface
in the annulus. The inner squares cover one azimuthal period 2π in horizontal direction
and one axial wavelength 2π/k in vertical direction. For better visibility the structures
are periodically continued slightly beyond these limits.

(v) These MCSs can bifurcate either as stable solution out of stable SPI then losing its
stability or as unstable solution to leave the stability of the pure state untouched.

In general at the onset, the amplitude of the respective MCS component is equal to the
respective SPI (major contribution) amplitude, where it bifurcates out while the other
component’s (minor contribution) amplitude starts from zero. Note that different line styles in
figure 4 do not say anything about the stability of the respective solutions. Besides, without
any symmetry breaking effects, L- and R-SPI state and respective SPI contributions in the
complete MCS are exchangeable. Drawing the MCS branch above the pure SPI branches
does not say anything about magnitude of real mode amplitudes. Normally they are smaller
in the MCS than in the SPI.

5.2. MCS establishing stable footbridges

In contrast to MCSs as bypass solution (Altmeyer and Hoffmann 2010) which have been only
observed to exist above the bifurcation thresholds of both SPI contributions (see figure 4), the
situation for MCS establishing footbridges becomes versatile. In the following, we discuss
such a footbridge solution in detail for parameter path varying Re2 at a fixed value Re1 = 370.
But before discussing this scenario in detail, we will schematically illustrate the transition.

5.2.1. Schematics of MCS. Figure 5 presents schematics for linear superposition of L1
(p1 = −1) and R2 (p2 = 2) SPI contributions with varying amplitude ratio. Note that we
have chosen this example due to simplicity, although it could not be found in our simulations.
The colored (gray shaded) regions denote radial outflow, u > 0 and the white ones indicate
radial inflow, u < 0, respectively, in the plane of an unrolled cylinder surface in the annulus.
The inner squares cover one azimuthal period 2π in horizontal direction and one axial
wavelength 2π/k in vertical direction. Starting in (1) with a pure L1-SPI and increasing
the R2 component, first leads to a left-winding L1R2-MCS (2) with the major azimuthal
wave number M = 1, and the pitch p = −1. Equal L1 and R2 contributions in (3) yield to
L1R2-/R2L1-MRIB with p = 1/2. In (4), the dominant R2 contribution establishes the right-
winding characteristics of an R2L1-MCS. Finally, (5) shows a pure R2-SPI with vanishing
L1 component. For both MCS states (2) and (4) hold similarly: the major SPI contribution
determines the propagation direction of the whole structure, while the minor SPI contribution
produces a modulation that is oppositely directed; thus the whole structure propagates upward
(downward) in (2) ((4)) due to major L1 (R2) component. The spatio-temporal behavior of
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Figure 6. Bifurcation diagrams of the radial velocity amplitude |um,n| at mid-gap for
stable MCS as footbridge solution between two SPI states with different helicity at
Re1 = 370. (from left to right) R4L3-MCS (�) bifurcating out of R4-SPI (H), changing
over R4L3-/L3R4-MRIB (�) into L3R4-MCS (� ) ending in L3-SPI (N). Due to
complexity of this figure we want to refer to schematics in figure 11, that show an
overall picture of different states and bifurcations. See text for detailed information.
Arrows below abscissa mark those Re2 for the present snapshots in that figure 7.

MCS exhibits aspects of both, SPI and RIB. Usually, all (vertical and horizontal)8= 0 phase
lines rotate in the same direction as the inner cylinder. In contrast to RIB states with horizontal
pinned phase lines at distinct z = const. positions the phase lines for MRIB are not—they have
a finite slope (see finite pitch p = 1/2 in (3)). Instead the phase lines propagate axially due to
their finite slope and the rotation of the complete pattern.

5.2.2. Bifurcation scenario. In this subsection we elucidate the bifurcation scenario of MCS
as footbridge solutions exemplarily focusing on the transition between 3-SPI and 4-SPI.
Figure 6 illustrates the bifurcation branches of L3-SPI (N), R4-SPI (H), R4L3-MCS (�) and
L3R4-MCS (�). For the here used control parameters the bifurcation order (out of CCF)
of 3-SPI and 4-SPI depends on Re2. Thus, for strong counter-rotation (in figure 6(a) from
left to right), first the 4-SPI and later the 3-SPI bifurcates out of CCF, while the sequence
of bifurcation is reversed for co-rotating cylinders (figure 6(b)). Resulting in the solution
branches (here for characteristic dominant mode amplitudes, i.e. (3,1) and (4,−1)) crosses at
Re2 about −654. Note, that (i) all presented branches do not say anything about the stability
of the respective solutions and (ii) SPI and RIB bifurcate at a common threshold. The latter
and the branches of other solutions with M 6 2 which also exist for these parameters are not
of interest here and are therefore neglected in the figure due to better visibility.

We start the discussion of the bifurcation scenario presented in figure 6(a) on the left
side in strong counter-rotating region A with basic state, CCF. For MCS, we captured both
the major and the minor mode components, i.e. (3,1) and (4,−1) for R4L3-MCS and L3R4-
MCS, respectively. At Re2 about −850 (region B1) first the R4-SPI (together with 4-RIB)
bifurcates primarily out of the CCF (note that all RIBs are neglected due to better visibility).
With increasing Re2, at about −837.5 the R4L3-MCS solution bifurcates secondarily out
of the R4-SPI. Note this is significantly below the 3-SPI solution threshold. It follows that
the major R4 contribution arises out of the R4-SPI branch while the minor L3 contribution
of L3-SPI emerges from zero. At Re2 about −756 also the L3-SPI bifurcates out of the CCF

12
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Figure 7. Snapshots of isosurfaces (a) of the azimuthal vorticity η = ±80 [min,max] =

[−340, 340] and (b) horizontal cuts in (r, θ) plane at mid-height, z = 0, (1,2,4,5) and
z = ±0/2 (3) for several flow structures at Re1 = 370 and different Re2 (1) −840,
(2) −750, (3) −666.7, (4) −550 and (5) −305.3 during the transition from R4-SPI to
L3-SPI (see labels on top), as presented in figure 6 (see arrows below abscissa) (yellow
(light gray)) denotes maximal inflow and red (dark gray) maximal outflow, respectively.

(region D). Further increasing Re2, the amplitude ratio |u4,−1/u3,1| decreases, but first remains
smaller than 1 (characterizing R4L3-MCS) while both major and minor mode amplitudes
approach each other, i.e. the modulations of R4L3-MCS decrease (see figure 7). In regions
C and D the whole structure is still downward propagating due to major R4 contribution.
The minor L3 contribution just results in an upward propagating modulation. A point of
special interest is at Re2 about −666.5, where the dominant mode amplitudes of both
SPI contributions are identical presenting a R4L3-/L3R4-MRIB state. Hereafter, on further
increasing Re2, the structural properties are changed in region E. Now the amplitude ratio
|u4,−1/u3,1| is larger than 1 characterizing an L3R4-MCS, which is upward propagating due
to the major L3 contribution and modulated by the minor R4 contribution (see also movie5.avi,
available from stacks.iop.org/FDR/46/025503/mmedia). Apart from changing the magnitude
of SPI contributions in the MCS (between regions D and E) this L3R4-MCS is conserved for
increasing Re2 over a wide range of Reynolds numbers (−644.8; 298.7) (neglected as not of
interest). Finally the MCS branch ends in the L3-SPI solution branch at Re about 306.4 (see
figure 6(b)).

Note, for the sake of visibility we presented only one of the two respective SPI branches,
namely L3-SPI and R4-SPI. In the absence of symmetry breaking effects, the connection
from L4-SPI to the R3-SPI branch via MCS state looks exactly the same by changing L-
and R-SPI contributions. Moreover, the branches presented here do not say anything about
the stability of the respective solutions in full space or other subspaces. Meanwhile, solutions
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which also exist for these parameters with either M 6 2 and corresponding RIB having the
common threshold as SPI are not of interest and therefore also neglected in the figure due
better visibility. Symbols are just to guide the eye; the numerical calculations have been done
for significantly more values.

5.2.3. Spatio-temporal characteristics. The arrows in figure 6 mark Reynolds numbers,
where we made the five snapshots of figure 7 that depict (a) isosurfaces and (b) horizontal
cuts of the azimuthal vorticity η in (r, θ) (at mid-height, z = 0, but (3) at 0/4 and −0/4,
respectively). The snapshot sequence illustrates the structural changes of the footbridge
solution during the transformation from R4-SPI to L3-SPI. In the axial direction, each
isosurface plot (a) covers one axial wavelength. Starting with a pure R4-SPI (figure 7(1))
the azimuthal wavenumber m = 4 is obvious, the horizontal cut in (r, θ) clearly indicates
four pairs of vortex tubes. This (m = 4) also remains dominant in R4L3-MCS (see helical
right-winding shape in (a2)) but becomes already strong modulated due to increased minor
L3 contribution with m = 3 (see figure 7(2), there are still four pairs of vortex tubes but
not symmetrically arranged anymore). It follows that the structure becomes more and more
deformed. Visible is the isovorticity surface for η = 80 (red (dark gray)), it is narrow but
still remains closed, whereas the one for η = −80 (yellow (light gray)) is already broken up.
This means that the maximal vorticity at this position is decreased. Thus, the vortex intensity
becomes weaker. Figure 7(3) presents the R4L3-/L3R4-MRIB with almost equal dominant
mode amplitudes of both SPI contributions. Depending on the axial position, this solution
indicates more right- or left-winding characteristics (b3). Note that (3) does not present
a ‘perfect’ MRIB, due to ‘imperfections’, i.e. different amplitudes in the higher harmonic
modes. Thus, the top of (b3) offers a more pronounced R4 contribution while the bottom
one suggests the L3 contribution to be dominant. Note that only considering the (r, θ) plots
the helicity, i.e. the winding characteristic of the flow is indistinguishable. Even while the
isosurfaces in (4) are still open, the plot suggests a helical left-winding shape characterizing
the dominant L3 contribution. The still strong but now only minor R4 contribution only results
in strong modulation. Finally, the minor R4 contribution vanishes at the bifurcation point and
thus (5) shows a pure L3-SPI with only azimuthal wavenumber m = 3.

5.3. Spatio-temporal behavior of transients

In order to illustrate the different structures appearing during the transition from 3-SPI to
4-SPI discussed in the previous section, we choose parameters for which L3R4-MCS but no
R4L3-MCS (due to their major and minor contribution) stable exist, starting in an R4-SPI state
(see figure 6(a), region E). To that end the preparation of R4-SPI as initial state was done by
first confining to the subspace of R4-SPI and then releasing this confinement after a sufficient
long relaxation time τD about 0.5 (see figure 8) in the remainder of the simulations. Note
that not all constrictions are reversed, moreover, the solutions are confined to the subspace of
MCS solutions. In this, in particular, R4-SPI, L3-SPI, R4L3-MCS, L3R4-MCS and R4L3-/
L3R4-MRIB are able to exist. In doing so, one observes MCSs as bridging states during
their transients to the respective final state (here L3R4-MCS) and thereby offering equal flow
pattern as for the case of stable footbridge solutions. Here the full transformation reads R4-SPI
→ R4L3-MCS → R4L3/L3R4-MRIB → L3R4-MCS.

5.3.1. Time evolution of modes and energy. Figure 8 depicts the time evolution of the
dominant mode amplitudes |um,n| after the preparation of unstable R4-SPI during the
transformation scenario R4-SPI → R4L3-MCS → R4L3/L3R4-MRIB → L3R4-MCS for
control parameters Re1 = 370 and Re2 = −550 (region E in figure 6). After releasing the

14



Fluid Dyn. Res. 46 (2014) 025503 S A Altmeyer

0 0.5 1 1.5 2
τD

0

2

4

6

8

10

|u
m

,n
|

(4,1)

(m,n)=(3,1)

(1,−2)

(2,3)

Figure 8. Time evolution of the (dominant) mode amplitudes |um,n| during the
transformation scenario R4-SPI→R4L3-MCS→R4L3-/L3R4-MRIB→L3R4-MCS at
Re1 = 370 and Re2 = −550. Here the parameter lying in the region, where L3R4-
MCS but no R4L3-MCS states stable exist (region E in figure 6(a)). The initial
state was prepared by constricting the modes to the subspace of R4-SPI. Additional
to both major, (3,1) and minor, (4,−1), SPI contributions to complete the MCS,
both the largest nonlinear driven modes (1,−2) and (2,3) are also presented. Arrows
below the abscissa mark five different time positions for which snapshots are
presented in figure 10 (see also movie3.avi, movie4.avi and movie5.avi, available from
stacks.iop.org/FDR/46/025503/mmedia).

constriction to R4-SPI subspace (τD at about 0.5) and only allowing for MCS subspace, the
system is driven away from the unstable R4-SPI solution by computer noise only. In this case,
there appear during a narrow time interval about 0.4 diffusion time (τD ∈ [0.5; 0.9] in figure 8)
the structures R4L3-MCS and R4L3-/L3R4-MRIB as transient short-live-time solution before
the system finally relaxes into a L3R4-MCS. All in all, the flow structures change quite fast
after releasing the constrictions of preparation scenario.

Furthermore the temporal evolution of the energy in the system is interesting. Here as
global measure of the flow, we will use the modal kinematic energy

E =

∫ 2π

0

∫ 0/2

−0/2

∫ ro

ri

uu∗r dr dz dθ, (8)

where u is the velocity field. As discussed solutions are time-dependent, the time-averaged
kinetic modal energy E of (8) is taken over a very long time (long enough, typically several
diffusion times, so that the average does not change very much).

Figure 9 shows the evolution of E during the transition from R4-SPI to L3R4-MCS (see
figure 8). After releasing the stabilizing constrictions, the total energy, E , decreases quite
fast from the energy level of a pure 4-SPI, E4-SPI, even below the level of a pure 3-SPI,
E3-SPI. Hereafter it settles down also quite fast to the level of L3R4-SPI, EL3R4-MCS which
lies between both SPI states. Note that EL3R4-MCS and ER3L4-MCS are identical. Even while
the MCS is significantly more complex than the pure SPIs, its total energy is smaller than that
of R4-SPI.

It is just coincidental that the energy level EL3R4-MCS for the L3R4-MCS lies almost
in the middle of those for pure SPI, E4-SPI and E3-SPI. For several MCSs having other SPI
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Figure 9. Variation of E with τD during the transformation from R4-SPI to L3R4-MCS
at Re1 = 370 and Re2 = −550 (see figure 8). The dashed lines present the long-time
averaged energies E of flows as indicated.

contributions, we find the energy level to be independent of the SPI contributions; lying below,
between or above that of the pure SPIs.

5.3.2. Spatio-temporal connections of transients. In order to follow the spatio-temporal
changes, during the transition from the R4-SPI to L3R4-MCS and the change in the
helicity of the flow structure, we made snapshots for five different time positions marked
by arrows in figure 8 at t1 = 0.64, t2 = 0.68, t3 = 0.72, t4 = 1.04 and t5 = 2.25. The flow
pattern is shown in figure 10 depicting cuts in (r, θ) plane (a) at mid-height including
the color-coded azimuthal vorticity η, isosurfaces of η = ±80 (b) and the radial velocity
u(d/2, θ, z) (c) on an unrolled cylindrical surface in the annulus at mid-gap. Further
details of the transformation R4L3-MCS→R4L3/L3R4-MRIB→L3R4-MCS can be seen
in the online available material movie3.avi, movie4.avi and movie5.avi (available from
stacks.iop.org/FDR/46/025503/mmedia).

After preparing the initial R4-SPI state due to constriction to the corresponding subspace,
R4L3-MCS at t1 is established relatively fast after releasing the constrictions. Here the helicity
of the structure is still given by the major R4 contribution with its dominant (4,−1) mode
and just modulated by the minor L3 contribution with dominant (3,1) mode (see continuous
contours (figure 10(c1)), u = 0, closed from top right to bottom left). The complete structure
propagates downward. The minor contribution part results in local shrinking and expansion
of the vortex tubes which remain helical right-winding orientated but visibly deformed by
an upward propagating modulation. For later time t2 the modulation in the u = 0 contours
is increased, but the structure remains still helical right-winding orientated due to the major
R4 contribution. It follows that the flow structure develops a stronger axial dependence. This
situation begins to change at t3 as the dominant mode amplitudes of both SPI contributions,
(3,1) and (4,−1), to conglomerate the MCS state become almost identical. This is the case
of a R4L3-/L3R4-MRIB solution. Note that higher nonlinear stimulated mode amplitudes
are not all identical and therefore there is no ‘perfect’ MRIB at t3. The higher modes of the
R4 contribution are still more pronounced resulting in visible right-winding characteristics.
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Figure 10. Snapshots of flow structures at five time positions t1 = 0.64, t2 = 0.68, t3 =

0.72, t4 = 1.04 and t5 = 2.25 as marked by arrows at the abscissa in figure 8 during the
temporal evolution R4L3-MCS→R4L3-/L3R4-MRIB→L3R4-MCS at Re1 = 370 and
Re2 = −550. (a) Cuts at in (r, θ) plane at mid-height including the azimuthal vorticity
η, color-coded from yellow (light gray) (minimum) to red (dark gray) (maximum).
(b) Snapshots of the isosurfaces of the azimuthal vorticity η = ±80 [min,max] =

[−350, 350]. Red (dark gray) (yellow (bright gray)) coloring denotes positive (negative)
vorticity. In axial direction each isosurface plot covers one axial wavelength. (c)
Radial velocity u(d/2, 0, θ, z) on an unrolled cylindrical surface in the annulus at
mid-gap. Red (dark gray) (yellow (light gray)) denotes maximal inflow (outflow).
For further details see also movie3.avi, movie4.avi and movie5.avi (available from
stacks.iop.org/FDR/46/025503/mmedia).

From t3 to t4 the shape of the structure changes due to the exchange in the dominant SPI
contributions, from R4 to L3. At t4 a dominant helical left-winding orientation is obvious
(see contours in u in figure 10(c4), there are closed ones now from top left to bottom right).
This helical shape is further enforced until reaching the end state L3R4-MCS at t5, now with
obvious major L3 and minor R4 contribution. The change of the azimuthal wave number can
be followed in the (r, θ) plane (see figure 10(a)). Starting with four pairs of vortex tubes at t1
due to major R4 contribution in the R4L3-MCS, one of these tubes becomes eliminated during
evolution from t2 to t4. Finally, at the end t5 there are three pairs of vortex tubes. Note that
these are more or less pronounced due to the strong modulation of the flow in axial direction.

Figure 11 summarizes the full scenario of MCSs establishing a footbridge solution in a
schematic bifurcation diagram of vortex flow amplitudes versus control parameter, e.g. Re2

(see also figure 4). The two different helical SPI solution branches with different azimuthal
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Figure 11. As figure 4: schematics for the bifurcation of vortex flow amplitudes versus
a suitable control parameter, e.g. Re2. The azimuthal wave numbers of both SPI states
are considered to be different a 6= b. MCSs establish footbridges that connect the Rb-
SPI with the La-SPI solution branch. Note that the lines do not say anything about the
stability of the respective solutions.
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Figure 12. Schematics for the transitions between SPIs with azimuthal wave numbers
Mi and either left(L)- and right(R)-winding helicity. Here M1 6= M2 6= M3. The bottom
level indicates the footbridge solutions (red (light gray) highlighted) investigated in
this paper. The circles at the bottom indicate MCSs as bypass solutions (Altmeyer and
Hoffmann 2010).

wave numbers a 6= b are connected by footbridge solution of RaLb-/LbRa-MCS. In between
for identical major and minor contributions a LaRb-/RbLa-MRIB solution exists. As in
figure 4, the line style does not say anything about the stability of the respective solutions.
But note that in contrast to MCS appearing as bypass solution for MCSs which establish
footbridge solutions, it is not necessary for both SPI contributions to generate the MCS
solution to exist simultaneously. Such scenarios have also been observed but just presenting
a special case of a footbridge solution. Additionally, we also want to mention that we found
such MCS bifurcating out of that SPI characterizing the minor contribution. Likewise the
visualization of MCS branch above that of SPI does not say anything about the magnitude of
mode amplitudes; in general the mode amplitude of major SPI contribution decreases at the
bifurcation to compensate the increase of the modes of minor SPI contribution.
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6. Conclusion and discussion

In this paper we elucidated the connection between several helical SPIs which differ in
helicity and pitch. We considered differentially rotating cylinders with axial periodic boundary
conditions, fixed axial wave number k = 3.927 and fixed radius ratio 0.883. The transition
between different SPIs is mediated by secondarily bifurcating MCSs. We find these MCSs
exhibit a direct way to establish stable footbridges between SPIs without involving further
primary bifurcating solutions such as RIBs. RIBs play a crucial role in the transition scenario
via wavy vortices (Hoffmann et al 2009).

For qualitative and quantitative analysis, we focused exemplarily on the transformation
from R4-SPI to L3-SPI (due to symmetries the transformation from L4-SPI to R3-SPI is
included) and investigated the bifurcation scenario and the spatio-temporal behavior of all
states appearing therein. We were able to follow in detail how the vortex tubes of initial
pure right-winding R4-SPI become destroyed and continuously stronger modulated and
deformed due to decreasing R4 and increasing L3 contribution in the secondarily bifurcating
R4L3-MCS. Approaching the R4L3-/L3R4-MRIB with almost identical R4- and L3-SPI
contributions but opposite helicities the vortex tubes brake up. Passing the MRIB state, they
reconnect again to result in helicity and propagation direction of the L3R4-MCS solution
which is opposite to the former situation of R4L3-MCS. In the absence of any symmetry
breaking effect, the transformation is reversible from L3-SPI to R4-SPI in the above-described
scenario.

Flow states of MCSs as footbridges can appear either stale or unstable. Transient states
elucidate similar spatio-temporal characteristics. To trace these transients, we applied some
mode constrictions to find solutions in subspaces which are normally unstable in the full
space. Letting fall some constrictions, we could follow the transient dynamics of footbridge
solutions. Note that any solutions found in subspace are necessarily also solutions of the full
space and hence represent physical flow states.

Finally, figure 12 elucidates schematics of the complete bifurcation scenario for MCS
solutions. Three different kinds of bifurcations connecting different spirals are possible:

(i) The transition between SPIs with the same azimuthal wavenumber M1 but different
helicities (Pinter et al 2006), L- an R- (top in figure 12). This is the special case of CSPI.

(ii) The transition between SPIs with different azimuthal wave numbers M2 6= M3 and also
different helicities (bottom level). This is the new and main contribution of the present
study (bottom in figure 12: red (light gray) highlighted footbridges).

(iii) The transitions between SPIs with equal helicity but different azimuthal wave numbers
(Deguchi and Altmeyer 2013) (left and right side in figure 12).

In addition, as a special case of the scenario (ii) one also finds MCS appearing as bypass
solution (Altmeyer and Hoffmann 2010) starting and ending in the same SPI branch (circles
on the bottom level).

We want to mention that one significant difference between MCS as bypass and MCS as
footbridge solutions is that the latter can also appear below the bifurcation thresholds of the
SPI contributions that generate the MCS.
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