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ABSTRACT

Time-dependent boundary conditions are very common in natural and industrial flows and by far no exception. An example of this is the
movement of a magnetic fluid forced due to temporal modulations. In this study, we used numerical methods to examine the dynamics of
ferrofluidic wavy vortex flows (WVF2, with dominant azimuthal wavenumber m ¼ 2) in the counter-rotating Taylor–Couette system, which
was subjected to time-periodic modulation/forcing in a spatially homogeneous magnetic field. In the absence of a magnetic field, all WVF2
states move in the opposite direction to the rotation of the inner cylinder, they are retrograde. However, when strength or frequency of the
alternating magnetic field increases, the motion direction of the flow pattern changes. Thus, the alternating field provides a precise and con-
trollable key parameter for triggering the system response and controlling the flow. Aside, we also observed intermittent behavior when one
solution became unstable, leading to random transitions in both, the transition time and toward the different final solutions. Our findings
suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which may have applica-
tions in the development of modern fluid devices in laboratory experiments. These findings provide a framework to study other types of mag-
netic flows driven by time-dependent forcing.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0238005

I. INTRODUCTION

The observation of flow reversal upon parameter changes or per-
turbations is closely related to intriguing phenomena in nature, such as
geomagnetic reversal. Here, the interchange of the positions between
the magnetic north and south pole due to a drastic change in a planet’s
magnetic field1 is only one example. The latter is caused by the
dynamo action in which the convection of molten iron in the core pro-
duces electric currents, generating a geomagnetic field, and then the
reversal of the molten iron flow direction triggers the geomagnetic field
to switch the poles. Such a switch of the geomagnetic field, which typi-
cally occurs within a few 10 000years has been investigated in several
computational fluid models incorporating the interaction between
electromagnetism and fluid dynamics.2–5 This, among others, moti-
vates this work to investigate the dynamical mechanism involved, in
controlling and generating the flow to reverse.

In this study, we discuss the occurrence of flow pattern reversals
induced by an alternating magnetic field in the classic Taylor–Couette
system (TCS).6 The TCS [Fig. 1(a)] is a well-known hydrodynamic
system that has been extensively studied through experiments,

analysis, and computational methods, and is crucial for understanding
fundamental fluid dynamics phenomena for many decades.7–11 While
time-periodic forcing in TCS with classical Newtonian fluid has been
explored in earlier works,12–17 it has been introduced into the system
through modifications of boundary conditions, such as axial or azi-
muthal oscillation of cylinders, pulsation of axial imposed flow, or
radial through flow (requiring porous cylinder walls). By considering
magnetic fluids like ferrofluids,18 we can directly realize periodic forc-
ing within the fluid in the annulus without altering the original bound-
ary conditions. Such magnetic nanofluids have a wide range of
applications, from embedded fluidic devices in computer hard drives
to laboratory experiments exploring the fundamentals of geophysical
flows,19,20 and eventually, aerospace applications.21,22

Ferrofluids were first developed in 1963 by NASA scientist
Stephen Papell as a potential rocket fuel. These fluids contain tiny
magnetized particles at the nanoscale. In the absence of an external
magnetic field, the fluid has zero net magnetization because the mag-
netic moments of the nanoparticles are randomly oriented. In this
state, the influence of the magnetized particles on the physical
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properties of the fluid, such as its density and viscosity, is negligible.
However, when an external magnetic field is present, the flow and
dynamics of the fluid can be significantly altered. These effects range
from simple shifts in solution bifurcation thresholds and changes in
system stability23–27 to the formation of entirely new flow struc-
tures.24,29–31 Nonetheless, research on ferrofluids under alternating
magnetic fields is relatively scarce, with most studies focusing on vis-
cosity effects and heat behavior.41–43

The previous research in TCS using classical fluids has revealed
that the reversal of flow pattern propagation is intrinsic to the system.
This was observed in simulations with both periodic boundary condi-
tions and a finite length annulus (closed lids on both sides), which
resulted in similar wave propagation reversal.40 Furthermore, in ferro-
fluidic Taylor–Couette flow under periodic boundary conditions, wave
propagation reversal can be induced by modifying a static magnetic
field,35 while maintaining the same azimuthal wavenumber.

Our study focuses on the effects of an alternating magnetic field
with variations in modulation amplitude and frequency on the flow
dynamics. We analyze how the modification in the azimuthal wave
speed (x) of the wavy instability leads to it reaching zero and eventu-
ally changing its sign, causing the waves to move in the opposite direc-
tion. For the considered parameters of constant and sufficiently large
counter-rotation, the wavy flow transitions from retrograde to pro-
grade behavior as the magnetic field modulation is increased.
Additionally, we describe the complex flow dynamics that emerge for
such alternating field parameters when the system is at the edge
between prograde and retrograde dynamics, resulting in an oscillating
standing wave. In this context, with modulation in the driving fre-
quency, we also observed intermittency dynamics.

The outline of the paper is as follows. Following the introduction,
Sec. II describes the basic equations, numerical method as well as the
explored parameter space. Thereafter, Sec. III presents the numerical
results starting with an introduction to the WVF state that is consid-
ered. This is followed by an investigation of the bifurcation scenario
via static and alternating magnetic fields together with an analyze in
flow dynamics and spatial-temporal characteristics that coincides with

the wave propagation reversal, in particular with respect to driving fre-
quencyXH . Finally, Sec. IV provides a discussion and conclusions.

II. MATERIALS AND METHODS
A. Governing equations

For this work, the radius ratio is fixed to 0.5 (wide gap), the aspect
ratio to C ¼ 10 while varying the axial alternating magnetic field.
Further, the inner and outer cylinders (of radii Ri and Ro) are hold at
constant rotation speed corresponding to inner and outer Reynolds
numbers Rei ¼ 300 and Reo ¼ �145 (Rei½o� ¼ xi½o�ri½o�d=� is the ratio
between inertia and viscous forces, � is the kinematic viscosity).
Further, non-rotating fixed endplates are considered, which resulted in
no-slip-fixed rigid boundary conditions (RBC) with zero velocity at
z ¼ 6C=2. The latter breaks the Oð2Þ axial symmetry of the (infinite)
periodic TCS. The boundary conditions are uðri; h; z; tÞ ¼ ð0;Rei; 0Þ,
uðro; h; z; tÞ ¼ ð0;Reo; 0Þ, and uðr; h;6C=2; tÞ ¼ ð0; 0; 0Þ, where the
non-dimensional inner and outer radii are ri ¼ Ri=d and ro ¼ Ro=d,
with gap d ¼ ro � ri. The gap between the cylinders is filled with a vis-
cous, incompressible, isothermal magnetic based ferrofluid APG933.33,34

We realize the periodic forcing in the system via a sinusoidal
modulation signal to the external magnetic field, which is orientated
parallel to the system symmetry (z) axis, uniform in space, and har-
monic in time27,28

Hz ¼ HS þ HM sinðXHtÞ½ �ez : (1)

It is important mentioning that such a pure axial-oriented magnetic
field does not change the basic system symmetry, only the stability
thresholds are altered.23–25

The flow dynamics of a ferrofluid are governed by the incom-
pressible Navier–Stokes equations, including additional magnetic
terms, and the continuity equation. Using the gap width d as the length
scale, the diffusion time sD ¼ d2=� as the timescale, scaling pressure
with q�2=d2, and the magnetic field H and the magnetization M with
ðq=l0Þ0:5�=d (l0 is the magnetic constant, which is the magnetic per-
meability of free space), the non-dimensionalized ferro-hydrodynami-
cal equations of motion and continuity equation26,27,29,36 read

ð@t þ u � rÞu�r2uþrp¼ ðM � rÞHþ 1
2
r� ðM�HÞ;

r � u¼ 0:
(2)

Equation (2) is solved together with an equation that describes
the magnetization of the ferrofluid. Here we consider the equilibrium
magnetization of an unperturbed state, in which a homogeneously
magnetized ferrofluid is at rest. Under this condition, the mean mag-
netic moments are orientated in the direction of the magnetic field and
one finds Meq ¼ vH. Further, we use the Langevin formula, with an
assumed initial value 0.9 and approximately a linear magnetization law
in order to determine approximately the magnetic susceptibility v of
the ferrofluid. In addition, the near equilibrium approximations of
Niklas23 is considered, with small deviations jjM �Meqjj and small
magnetic relaxation time s: jr � uj; s � 1. A more detailed descrip-
tion of the numerical procedure and elimination process can be found
in the Appendix of an earlier work.27

The biggest advantage in using such a modified Niklas
approach23,24,27,29 is the fact that all the effects of the magnetic field
and the magnetic properties of the ferrofluid on the velocity field can
be characterized by a single (time-dependent) parameter/function:

FIG. 1. System and explored parameter space. (a) Geometry of the Taylor–Couette sys-
tem (TCS) (only the bottom lid serving as one of the axial end walls is indicated) with an
external applied homogeneous axial magnetic field HzðtÞ ¼ ½Hz;S þ Hz;M sinðXHtÞ�ez .
(b) Parameter space: arrows I and II indicate the investigated parameter space spanned
by sz;S 2 ½0; 1� and sz;M 2 ½0; 1�, respectively. Points A, B, and C give the parameters
for different WVF2 at static fields and arrows III, IV, and IV give the corresponding modu-
lation amplitudes to this set of parameters.
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szðtÞ ¼ sz;S þ sz;M sinðXHtÞ; (3)

with sz;S being the static contribution, sz;M being themodulation ampli-
tude, and XH being the modulation frequency. For the exact procedure
and more details of how to solve the ferro-hydrodynamical equations
of motion [Eq. (2)], we refer to our earlier works.26–29

B. Symmetries

TCS is invariant under different spatiotemporal operations. The
governing equations and the boundary conditions are invariant under
arbitrary rotations Ra about the axis, reflections Kz about the annulus
mid-plane z ¼ 0, and with respect to time translations Ut0 , generating
the symmetry group SOð2Þ � Z2 �R. Thereby, the first two factors
consist of the purely spatial symmetries, and the third factor corre-
sponds to the temporal symmetries generating the one-dimensional
translation group R. The actions of the three symmetries on the veloc-
ity field are

Raðu; v;wÞðr; h; z; tÞ ¼ ðu; v;wÞðr; hþ a; z; tÞ; (4a)

Kz ðu; v;wÞðr; h; z; tÞ ¼ ðu; v;�wÞðr; h;�z; tÞ; (4b)

/t0ðu; v;wÞðr; h; z; tÞ ¼ ðu; v;wÞðr; h; z; t þ t0Þ: (4c)

C. Numerical method

The ferro-hydrodynamic equations [Eq. (2)] are solved using a
second-order time-splitting method with consistent boundary condi-
tions for the pressure.37,38 Our code G1D324,39 is a combination of a
finite-difference method in the radial and axial directions ðr; zÞ and a
Fourier–Galerkin expansion in the azimuthal direction ðhÞ with time
splitting, which leads to the following decomposition:

f ðr; h; z; tÞ ¼
X
m

fmðr; z; tÞ eimh (5)

for all fields f 2 fu; v;w; pg.
In order to characterize the different flow structures, we consider

different quantities. First, as a global measure of the flow, we use the
total modal kinetic energy:

Ekin ¼
X
m

Em ¼ 1
2

ð2p
0

ðk
0

ðro
ri

umu
�
mrdrdzdh; (6)

where um (u�m) is the mth (complex conjugate) Fourier mode [Eq. (5)]
of the velocity field. For instance, in the case of an axisymmetric solu-
tions (m ¼ 0) – here CCF and TVF, only E0 is non-zero. Second, as a
measure more closely related to the vortices and corresponding azi-
muthal and axial wavenumbers, we utilize the azimuthal decomposi-
tion [Eq. (5)] of the radial velocity field. Therefore, we perform an
additional axial Fourier analysis of the mode amplitudes umðz; tÞ at
mid-gap, r ¼ r1 þ d=2. We then identify for the dominant azimuthal
wavenumber, here m ¼ 2, the largest contribution in the axial Fourier
spectrum of umðz; tÞ for the patterns with k ¼ 4:21, k ¼ 3:85, and
k ¼ 3:69. It is worth mentioning that these wavenumbers k are not
externally forced, they are natural selected by the system based on sys-
tem parameters such as aspect ratio, radius ratio, and Reynolds num-
bers. The oscillation of the corresponding complex Fourier amplitudes
describes the frequencies xm;k. It is this quantity that describes the
wavy instability, and a change in its sign is direct correlated with the

wave propagation reversal. We identify the specific flow structures by
the abbreviation ðm; kÞ. These modes reflect the symmetry properties
of the vortex structures. Thus, the Fourier spectrum of the TVF solu-
tion contains the two dominant modes ð0; ½��kÞ, with one being the
complex conjugate. The spectrum of wavy vortex flow with two waves
corresponding to azimuthal wavenumber m ¼ 2 (hereafter designated
as WVF2) is dominated by ð2; kÞ and its complex conjugate ð�2;�kÞ
as well as the still dominant axisymmetric components ð0; kÞ and
ð0;�kÞ. This WVF2 appears also with different number of vortex pairs
within the annulus. Here we focus on WVF2 with either five vortex
pairs [WVF2ðk ¼ 4:21Þ] or four vortex pairs [WVF2ðk ¼ 3:85Þ,
WVF2ðk ¼ 3:69Þ] in the bulk (in addition to the Ekman vortices close
to the lids). For visualization purposes, we consider the azimuthal vor-
ticity component, g ¼ ðr� uÞ � eh ¼ @zu� @rw, as an adequate and
convenient measure to identify and recognize the geometry of complex
vortex structures via iso-vorticity surfaces.32 Further, we also use the
global mean angular velocity V¼hv=rir;h;z (nondimensionalized by the
inner cylinder rotation xi), which can be different from the azimuthal
wave speed xm;k reflecting the wavy instability. However, the sign of
xm;k determines the direction of wave propagation [positive (þ) for
prograde and negative (–) for retrograde with respect to the rotation
direction of the inner cylinder].

D. System – parameters setting and quantities

We explore the parameter space for static contribution
sz;S 2 ½0; 1�, modulation amplitude sz;M 2 ½0; 1�, and forcing frequency
XH 2 ½0:1; 500�. Trajectories I and II shown in the parameter space of
Fig. 1 represent pure static and pure alternating magnetic fields,
respectively. Points A, B, and C corresponding to parameters for differ-
ent WVF2 with the trajectories III, IV, and V highlight the parameters
at which we provide a more detailed study for alternating magnetic
field [cf. Fig. 2(1c)].

III. RESULTS
A. Wavy flow states

In TCS, the relative speed of rotation of the inner and outer cylin-
ders defines the rotational direction of the flow pattern. A most com-
mon scenario in the absence of any magnetic field is that the flow
pattern follows the rotational direction of the inner cylinder, which is
commonly referred to as the “normal” scenario – the flow is prograde.
However, for strong counter-rotations of both cylinders and some
other critical parameters, the flow pattern may follow the rotational
direction of the outer cylinder.39 The latter also applies to here chosen
system parameters. In the absence of any magnetic field, both wavy
flows WVF2ð5V; k ¼ 4:21Þ and WVF2ð4V ; k ¼ 3:69Þ are retrograde
in the sense that they rotate against the rotational direction of the inner
cylinder.

Before discussing any complex dynamics forced due to an
alternating magnetic field, we briefly describe the different wavy
flow patterns that can occur for the range of parameters that we con-
sider: wavy flows WVF2ð5V; k ¼ 4:21Þ, WVF2ð4V; k ¼ 3:85Þ, and
WVF2ð4V; k ¼ 3:69Þ, which all have m ¼ 2 twofold azimuthal peri-
odicity, as illustrated in Fig. 3. We also detected other wavy flows with
threefold symmetry (WVF3), but they are not further interesting for
the current study. The different states can exist with prograde or retro-
grade characteristics.
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The contours of the radial velocity uðh; zÞ on an unrolled cylin-
drical surface at mid-gap [Fig. 3(a)], as well as the contours of the azi-
muthal velocity component v in the ðr; hÞ plane at mid-height
[Fig. 3(e)], clearly show the azimuthalm ¼ 2 symmetry of these states.

Moreover, the isosurfaces of azimuthal vorticity [Fig. 3(b)] g pro-
vide an impression of the flow structures of these wavy states. For the
selected field strength sz;S ¼ 0:35, all wavy flows are stable and coexist-
ing. WVF2ð5V; k ¼ 4:21Þ and WVF2ð4V; k ¼ 3:85Þ exhibit prograde
wave propagation, meaning the waves follow the inner cylinder rota-
tion. On the other hand, WVF2ð4V ; k ¼ 3:69Þ moves in the opposite
direction, indicating retrograde behavior, as indicated by the arrows
below the images.

The different wavy states vary in the sense that they have different
axial wave numbers k (wavelengths k) due to different numbers of vor-
tex pairs in the annulus. WVF2ð5V; k ¼ 4:21Þ has five vortex pairs
(plus two Ekman cells), resulting in an axial wave number k ¼ 4:21
(k ¼ 1:49). Meanwhile, WVF2ð4V ; k ¼ 3:85Þ and WVF2ð4V; k
¼ 3:69Þ each have one vortex pair less (in total 4, plus two Ekman
cells) within the bulk. However, for the latter, the Ekman cells near the

lids have different sizes, resulting in different axial wavenumbers
k ¼ 3:85 (k ¼ 1:63) and k ¼ 3:69 (k ¼ 1:70), respectively.

In the following, we will analyze what happen if a magnetic field
is present.

B. Static magnetic field (sz;M50)

Figure 2(1) illustrates the evolution of the different WVF2 solu-
tions (Fig. 3) under the presence of pure axial, static magnetic field sz;S.
To characterize the flow structures, we examine kinetic energy Ekin,
radial flow field amplitudes jum;kj at mid-gap (time-averaged for time-
dependent solutions), and corresponding frequenciesxm;k of the dom-
inant axial Fourier amplitudes umðz; tÞ [Eq. (5)]. In the case of the
radial flow field amplitudes, we display the contributions of the
dominant, axisymmetric (m ¼ 0) mode, as well as the dominant non-
axisymmetric (m ¼ 2) mode embedded in the solution and character-
izing the wavy solution. In the absence of a magnetic field, the two sol-
utions WVF2ð5V; k ¼ 4:21Þ and WVF2ð4V ; k ¼ 3:69Þ are bistable
coexisting. With increasing axial field strength sz;S, the kinetic energy

FIG. 2. Bifurcation behavior with ð1Þ sz;S
and ð2Þ sz;M . Variation with sz;S [sz;M ] of
(a) (time-averaged) the modal kinetic
energy E kin [Eq. (6)], (b) (time averaged)
moduli jum;k j of the dominant axial Fourier
amplitudes of the azimuthal modes
umðz; tÞ [Eq. (5)] of the radial flow at mid-
gap, and (c) the corresponding frequencies,
xm;k for the flow states, WVF2ð5V; k
¼ 4:21Þ, WVF2ð4V; k ¼ 3:85Þ, and
WVF2ð4V; k ¼ 3:69Þ. Symbols primarily
distinguish different structures, but do not
represent the resolution of the calculations,
which varies depending on the proximity
with respect to the wave propagation rever-
sal; vertical arrows indicate the transition
toward a new solution if the old one
becomes unstable. Horizontal arrows with
labels A, B, and C in (1c) (see also Fig. 1)
highlight parameters for which frequency
dependence will be studied later.
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and all mode amplitudes for any shown solution WVF2 decrease
monotonically [Figs. 2(1a) and 2(1b)]. This is a result of the well-
known effect that any applied magnetic field stabilizes the basic state24

and thus the decrease in kinetic energy and particular mode ampli-
tudes indicates the shift closer to the bifurcation onset. The
WVF2ð4V; k ¼ 3:69Þ remains stable until disappearing at its bifurca-
tion onset at sz;S � 0:76, hereafter only the CCF-Ekman state39 is

present. On the other hand, WVF2ð5V ; k ¼ 4:21Þ becomes unstable
with increasing field strength at sz;S � 0:37 at which point it transi-
tions to the stable WVF2ð4V; k ¼ 3:69Þ solution (indicated by vertical
arrow). Meanwhile for larger sz;S, we detected the WVF2ð4V ; k
¼ 3:85Þ solution. It bifurcates stable out of the CCF-Ekman basic state
but loses its stability with decreasing sz;S and transitions at sz;S � 0:32
to the stable branch of WVF2ð4V ; k ¼ 3:69Þ. It is worth mentioning
that we never saw a transition to the WVF2ð5V ; k ¼ 4:21Þ solution
with a larger number of vortices in the axial direction.

The kinetic energy Ekin for the two solutions WVF2ð5V ; k
¼ 4:21Þ and WVF2ð4V ; k ¼ 3:69Þ is very similar, as shown in
Fig. 2(1a). This similarity can be understood because the system finds
it easier to adjust the axial wavenumber rather than to generate
another vortex pair within the annulus. When examining the corre-
sponding frequencies [Fig. 2(1c)] of the complex mode amplitudes
(correlated with the rotation direction of the whole flow structure),
one can observe a monotonically increasing x with increasing field
strength sz;S. For sz;S ¼ 0, both flow states, WVF2ð5V; k ¼ 4:21Þ and
WVF2ð4V; k ¼ 3:69Þ, are retrograde (x < 0). However, the corre-
sponding frequencies increase, cross zero, and become positive at
sz;S � 0:19 for WVF2ð5V ; k ¼ 4:21Þ and at sz;S � 0:489 for
WVF2ð4V; k ¼ 3:69Þ. After this point, the entire flow pattern is now
prograde. WVF2ð4V ; k ¼ 3:85Þ does not show any flow pattern rever-
sal and only exists stably as a solution with prograde dynamics.

C. Alternating magnetic field (sz;M 6¼ 0)

Increasing the modulation amplitude sz;M has a stabilizing effect
on the system, leading to a decrease in kinetic energy Ekin and mode
amplitudes jum;kj [Fig. 2(2)]. This effect is similar to increasing the
field strength sz;S in the static case, but it is quantitatively weaker. With
the maximum modulation amplitude considered here, sz;M ¼ 1, the
system does not reach the bifurcation point of the respective solution
and therefore does not enter the CCF-Ekman basic state. Just like in
the static scenario, the flow state WVF2ð4V ; k ¼ 3:69Þ remains stable
throughout the investigated parameter range, while WVF2ð5V ; k
¼ 4:21Þ loses stability and transitions toward WVF2ð4V; k ¼ 3:85Þ at
sz;M � 0:65. WVF2ð4V; k ¼ 3:85Þ is only stable for sufficiently large
sz;M and loses stability at smaller values, sz;M � 0:2, against the
WVF2ð4V; k ¼ 3:69Þ flow state (as indicated by vertical arrows in
Fig. 2). As the field amplitude sz;M increases, the corresponding fre-
quencies XH [Fig. 2(c)] also monotonically increase, cross zero, and
eventually become positive, signifying a change from retrograde to
prograde characteristics. Interestingly, WVF2ð4V ; k ¼ 3:85Þ also
crosses zero and changes its flow direction to prograde, whereas for
static magnetic field, it is only stable with prograde dynamics. The
modulation amplitudes for the zero crossings are very close to each
other (but not identical) for WVF2ð5V; k ¼ 4:21Þ at sz;M � 0:27 and
WVF2ð4V; k ¼ 3:85Þ at sz;M � 0:26. At larger values, sz;M � 0:47,
WVF2ð4V; k ¼ 3:69Þ eventually changes from retrograde to prograde.

D. Frequency dependence (XH)

Next, we will take a closer look at the non-linear dynamics as the
oscillation frequency varies. To do this, we will analyze the system
response for two different sets of parameters: (1) small modulation
amplitude, where sz;S ¼ 0:1 ¼ sz;M (point A in Figs. 1 and 2), and

FIG. 3. Flow visualizations of different stable WVF2 states at sz;S ¼ 0:35
(sz;M ¼ 0). ð1Þ WVF2ð5V ; k ¼ 4:21; tÞ, ð2Þ WVF2ð4V ; k ¼ 3:85; tÞ, and ð3Þ
WVF2ð4V; k ¼ 3:69Þ, WVF2ð5V ; k ¼ 4:21Þ, and WVF2ð4V ; k ¼ 3:85Þ are pro-
grade in the sense of following the inner cylinder rotation (see arrows below the
images), while WVF2ð4V; k ¼ 3:69Þ is retrograde, with the flow pattern not follow-
ing the inner cylinder rotation. Shown are (a) radial velocity uðh; zÞ on an unrolled
cylindrical surface in the annulus at mid-gap [red (yellow) color indicates in (out)
flow], (b) isosurfaces of azimuthal vorticity g ¼ ðr � uÞeh ¼ @zu� @r w ¼ 6200
[red (yellow) color indicates positive (negative) vorticity], (c) isosurface of azimuthal
velocity after subtracting the local azimuthal velocity for circular Couette flow,
v � vCCF , (d) vector plot ½uðr ; zÞ;wðr ; zÞ� of the radial and axial velocity compo-
nents (including the color-coded azimuthal velocity v), and (e) the azimuthal velocity
component v in ðr ; hÞ plane at mid-height (viewed from the bottom) [red (yellow)
color indicates positive (negative) velocity]. Note that both WVF2ð5V ; k ¼ 4:21; tÞ
and WVF2ð4V ; k ¼ 3:85; tÞ are time-dependent states.
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(2) large modulation amplitude, where sz;S ¼ 0:2 ¼ sz;M (points B and
C in Figs. 1 and 2).

1. Small modulation amplitude (sz;S50:15sz;M)

Figure 4 shows the oscillation of the control function szðtÞ
together with the system response. It illustrates the mode amplitudes
ju2;4:21j and corresponding frequency jx2;4:21j for WVF2ð5V; k
¼ 4:21Þ and ju2;3:85j with jx2;3:85j for WVF2ð4V; k ¼ 3:85Þ. This is
shown as a function of the reduced time t=TH (TH ¼ 2p=XH repre-
senting the associated modulation period of the alternating field).
Temporal oscillations are depicted for different frequenciesXH as indi-
cated. In the high-frequency limit, mainly the time average of szðtÞ

affects the flow dynamics and stability behavior. In this case, the equiv-
alent static magnetic Niklas parameter is larger than the mean value
hszðtÞiT , which is indicated by the horizontal dashed line in Fig. 4.

In the high-frequency limit (XH ¼ 500), for WVF2ð5V ; k
¼ 4:21Þ, the variations in the dominant mode amplitude ju2;4:21j are
small compared to its mean value. However, they are slightly bigger in
ju2;3:85j for WVF2ð4V; k ¼ 3:85Þ [Figs. 4(b) and 4(c)]. In both cases, a
phase shift occurs between the maximum and minimum of the field
function szðtÞ and between the minimum and maximum of the mode
amplitudes ju2;4:21j, ju2;3:69j. This phase shift is caused by the fluid’s
inertia resisting the fast-changing accelerating Kelvin force, resulting in
a temporal delay. As the frequency decreases, the phase shift also
decreases, while the oscillation amplitudes increase. For low

FIG. 4. WVF2 under alternating axial magnetic field szðtÞ with different driving frequencies XH for flow structures ð1Þ WVF2 ð5V; k ¼ 4:21Þ and ð2Þ WVF2 ð4V; k ¼ 3:85Þ.
(a) Temporal oscillations of the control function szðtÞ ¼ sz;S þ sz;M sinðXHtÞ [Eq. (3)]. Shown are the dominant ða; bÞ mode amplitude and frequency ju2;4:21j, jx2;4:21j WVF2
ð5V; k ¼ 4:21Þ and ju2;3:85j jx2;3:85j for WVF2ð4V; k ¼ 3:85Þ as a function of the reduced time t=THðTH ¼ 2p=XH being the modulation period associated with the corre-
sponding frequency) for parameter values sz;S ¼ 0:1 ¼ sz;M are displayed. Horizontal gray dotted lines indicate the static limits for sz;S ¼ 0, 0.1, and 0.2, respectively, while
the horizontal gray dashed line gives the high frequency limit. The horizontal red dotted line in (1c) highlights the zero-crossing as characterization for retrograde and prograde
dynamics, respectively. Note, that the WVF2 ð4V ; k ¼ 3:85Þ (2) is already a time-dependent solution in the absence of any field. Thus, here the horizontal dotted lines only
illustrate the corresponding time-averaged values for sz;S ¼ 0, 0.1, and 0.2, respectively.
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modulation frequency, the oscillation profiles approach the curve of a
static magnetic field, which is asymmetric due to a larger stabilization
effect for positive modulation amplitude in comparison to the destabi-
lization effect for the same but negative modulation amplitude.

The behavior of WVF2ð4V; k ¼ 3:85Þ [Fig. 4(2)] in a static mag-
netic field with sz;S ¼ 0:1 and sz;M ¼ 0 is time-dependent, and its
oscillations appear more complex due to the natural frequency
(x½WVF2ð4V; k ¼ 3:85Þ� � 0:12) of the flow. However, it exhibits
qualitatively similar behavior and response as WVF2ð5V; k ¼ 4:21Þ.
The dynamics seem to become simpler with increasing driving fre-
quency XH . At low frequencies XH , an overshoot in the mode ampli-
tudes ju2;4:21j and ju2;3:69j is observed when approaching the static
state, along with more pronounced overshoots in the corresponding
frequencies jX2;4:21j and jX2;3:69j [Fig. 4(1)]. This overshoot is caused
by the inertia of the fluid. The sign of the frequency of the wavy insta-
bility x2;4:21 identifies the flow as prograde (positive sign) or retro-
grade (negative sign). For small and moderate frequencies XH � 300,
x2;4:21 is mainly negative, changing its sign within one period of driv-
ing TH , which corresponds to alternating retrograde and prograde
dynamics [Fig. 4(1c)]. However, for driving frequencies XH � 300, the
flow remains retrograde as the wavy instability frequency x2;4:21 is
always negative. Consequently, the flow/global angular velocity
remains one-directional, only temporally slowing down without
changing its propagation direction.

As seen before [Fig. 4(1c)], when the driving frequency XH is
low, XH � 300, the wavy instability frequency x2;4:21 changes sign
within one oscillation period, causing the flow to switch between retro-
grade and prograde dynamics. Figure 5 illustrates the time evolution of
the flow dynamics for WVF2 (5V; k ¼ 4:21) under an alternating
magnetic field with sz;S ¼ 0:1 ¼ sz;M at a driving frequency of
XH ¼ 5. In the close-up of two periods [Fig. 5(b)], you can see the sys-
tem transitioning from retrograde (region A, indicated by the red left
arrow) to prograde behavior (region B, indicated by the black right
arrow) and vice versa when x2;4:21 crosses through zero. The brief ret-
rograde dynamics is displayed in the ðg�; gþÞ phase space as a small
loop [see close-up inset in Fig. 5(c)]. It is important to note that for the
parameters chosen here, it takes approximately nine periods TH of the
alternated forcing before the system returns close to its initial values in
phase space [compare points 0 and 9 in Fig. 5(c)]. Therefore, from a
dynamical perspective, we have a limit cycle solution lc with a small
drift.

The flow visualizations in Fig. 6 [top row (multimedia online),
middle row (multimedia online), and bottom row (multimedia
online)] show the reversal of the temporal flow pattern for WVF2 at
5V with k ¼ 4:21, transitioning from retrograde (x < 0) to prograde
(x > 0) and vice versa. The visuals for different times ti; i 2 f1; 5g [as
per Fig. 5(b)] are displayed. This correlates with the small loops visible
in the ðg�; gþÞ phase space [Fig. 5(c)], effectively illustrating the
dynamics of the system.

The flow transitions are detailed as follows: At time t1 (region A),
the flow moves rapidly with retrograde dynamics, maintaining this
direction at time t2, albeit at a significantly reduced speed, before
reversing direction at time t3. The flow with prograde dynamics at t3 is
notably slow and short-lived (region B). Subsequently, the flow returns
to retrograde dynamics (region A), starting slowly at t4 and gradually
increasing in speed until the end of the oscillation period at t5 (which
mirrors t1).

FIG. 5. Flow dynamics evolving with time t for WVF2 (5V; k ¼ 4:21) for an alternat-
ing magnetic field with sz;S ¼ 0:1 ¼ sz;M and XH ¼ 5. Shown are (a) variation
with time (for 11 field oscillation periods TH ) of the magnetic field szðtÞ, the modal
kinetic energy Ekin [Eq. (6)], moduli jum;k j of the dominant axial Fourier amplitudes
of the azimuthal modes umðz; tÞ [Eq. (5)] of the radial flow at mid-gap, and the cor-
responding frequencies xm;k . (b) Close up of (a) covering two periods. The flow is
retrograde in region A and prograde in region B. Small arrows below the abscissa
in (b) indicate time steps ti ; i 2 f1; 5g for which snapshots are shown in Fig. 9.
Red dashed line indicates x2;4:21 ¼ 0, while magenta dot-dashed line indicates the
mean value x2;4:21 ¼ �0:95. (c) Phase portraits in ðg�; gþÞ ¼ ðgðr ¼ ri ; h ¼ 0;
z ¼ C=4Þ; gðr ¼ ri ; h ¼ 0; z ¼ 3C=4ÞÞ plane; inset bottom left shows the
Poincar�e section for g� ¼ �500 (see vertical brown line) and inset top right is a
close up in phase space around 0. Each oscillation period TH is coded by a different
color and the same color code is used for each subplot. The gray colored line in (c)
indicates the diagonal gþ ¼ g�.
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Despite the momentary prograde behavior, the overall flow
dynamics remain retrograde, as evidenced by the average value
x2;4:21 ¼ �0:95 (Fig. 6, multimedia online).

2. Large modulation amplitude (sz;S50:25sz;M)

Figure 7 illustrates the system response with variation in driving
frequency XH similar to Fig. 4 but with larger modulation amplitude
sz;M ¼ 0:2. The specific flow states and parameters considered are
WVF2 (5V; k ¼ 4:21) at sz;S ¼ 0:2 ¼ sz;M and WVF2 (4V; k ¼ 3:69)
at sz;S ¼ 0:25; sz;M ¼ 0:2. The observations are qualitatively identical
to those for smaller parameters sz;S ¼ 0:1 ¼ sz;M , with respect to varia-
tion in modes and frequencies according to the driving frequency XH .
Similar delays and overshooting are detected, but they are more pro-
nounced in general. Additionally, WVF2 (5V; k ¼ 4:21) does not exist
stable for pure static field and small driving frequencyXH , and the sys-
tem transitions toward another solution for driving frequencies
XH � 0:57, which results in irregular intermittency (see later discus-
sion in Sec. III E).

The latter illustrate a closed circle (in particular two circles) as
manifestation for the two-torus characteristics. Within one period, the
system spend extended time with retrograde x2;4:21 < 0 (region A)
and prograde dynamics x2;4:21 > 0 (region B) [cf. Fig. 8(b)]. In fact,
the time that the system spend with prograde and retrograde dynamics
is almost identical. This is also visible in the corresponding ðg�; gþÞ
phase space trajectory [Fig. 8(c)], which looks like two loops with
shape of an “eight” on top of each other (cf. small loops for small
parameters sz;S ¼ 0:1 ¼ sz;M in Fig. 5 that indicated the short pro-
grade dynamics).

The Poincar�e section (at g� ¼ 500) exhibits a closed circle (in
particular two circles), manifesting the two-torus characteristics.
Within one period, the system spends extended time with retrograde
x2;4:21 < 0 (region A) and prograde dynamics x2;4:21 > 0 (region B)
[cf. Fig. 8(b)]. The time spent with prograde and retrograde dynamics
is almost identical, which is visible in the corresponding ðg�; gþÞ
phase space trajectory [Fig. 8(c)], resembling two loops with the shape
of an “eight” on top of each other (cf. small loops for small parameters
sz;S ¼ 0:1 ¼ sz;M in Fig. 5 indicating an only short prograde
dynamics).

When the system operates under these parameters, it takes
around four driving time periods TH to approach the initial solution
[Fig. 8(c)]. This is less than half the time compared to the scenario
with smaller field parameters sz;S ¼ 0:2 ¼ sz;M [Fig. 5(1b)]. The flow
pattern reversal for WVF2 (5V ; k ¼ 4:21) transitioning from retro-
grade (x < 0) to prograde (x > 0) and vice versa is illustrated in
Fig. 9 [top row (multimedia online), middle row (multimedia online),
and bottom row (multimedia online)] for different times ti; i 2 f1; 4g
according to Fig. 8(b).

At times t1 and t3 (region A), the flow is retrograde, while it is
prograde at times t2 and t4. However, due to the non-linear, asymmet-
ric effects of the magnetic field, the overall or average value x2;4:21

¼ �2:15 is negative, resulting in the overall flow dynamics remaining
retrograde (Fig. 9, multimedia online).

For WVF2 (4V; k ¼ 3:69) at the given magnetic field parameter
sz;S ¼ 0:45, sz;M ¼ 0:2, the average frequency x2;3:69 is positive but
very close to zero [Fig. 3(1c)]. This results in the flow being retrograde
and prograde almost an equal amount of time. However, the oscilla-
tion characteristics show that there is a small overall prograde dynam-
ics remaining. This is due to the slightly positive mean frequency
x2;3:69 ¼ 0:204 (Fig. 11, multimedia online). The variations in kinetic
energy Ekin and mode amplitudes jum;kj remain relatively straightfor-
ward, while the azimuthal vorticity g6 highlights the characteristics of
a two-torus T2 solution [Fig. 10(c)]. It takes about six periods TH for
the solution to come close to the initial state [compared points 1 and 6
in Fig. 10(c)].

The flow visualizations for the temporal flow pattern reversal for
WVF2 (4V; k ¼ 3:69) illustrate the transition from retrograde
(x < 0) to prograde (x > 0) and vice versa in Fig. 11 top row (multi-
media online), middle row (multimedia online), and bottom row (mul-
timedia online)]. These visualizations correspond to different times
ti; i 2 f1; 4g according to Fig. 10(b). In region A at times t1 and t3, the
flow is retrograde, while at times t2 and t4, it is prograde. The flow
dynamics mainly consist of oscillations with almost identical times for
retrograde and prograde dynamics. However, since the average value
x2;3:69 ¼ 0:204 is very small but positive, the flow exhibits an overall
prograde dynamics.

FIG. 6. Flow visualizations of the temporal flow pattern reversal for WVF2
(5V; k ¼ 4:21) with sz;S ¼ 0:1 ¼ sz;M and XH ¼ 5 for retrograde (x < 0) (a),
(b), (d), and (e) and prograde (x > 0) (c) situations at times ti ; i 2 f1; 5g as indi-
cated in Fig. 5. Top row: isosurfaces of azimuthal vorticity g ¼ 6200 [red (yellow)
color indicates positive (negative) vorticity]. Middle row: radial velocity uðh; zÞ on an
unrolled cylindrical surface in the annulus at mid-gap [red (yellow) color indicates in
(out) flow]. Bottom row: contours of azimuthal velocity component v in the ðr ; hÞ
plane at mid-height (viewed from the bottom) [red (yellow) color indicates positive
(negative) velocity]. Multimedia files show two periods, TX � 1:257, of the alternat-
ing field. Multimedia available online.
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E. Intermittency

In Sec. IV, we will take a closer look at WVF2 (5V ; k ¼ 4:21)
and analyze its behavior under an alternating magnetic field with
sz;S ¼ 0:2 ¼ sz;M at frequencies XH � 0:57. As mentioned previously
(see Fig. 8), the flow becomes unstable and transitions to another solu-
tion. During this process, intermittent dynamics are observed (see
Fig. 12). The final solution to which the flow transitions may vary, and
the intermittency time tinter required for the system to reach the new
solution is irregular. While Fig. 12(c) suggests a preference for a transi-
tion toward WVF2 (4V ; k ¼ 3:85) at lower frequencies XH , numerous
long-time simulations did not reveal any correlation between the initial
state WVF2 (5V; k ¼ 4:21) and the final states WVF2 (4V; k ¼ 3:85)
or WVF2 (4V; k ¼ 3:69).

Figure 12 shows three examples of the transition toward WVF2
(5V; k ¼ 3:85), WVF2 (5V; k ¼ 3:69), and WVF2 (4V; k ¼ 3:61),

respectively, along with the transition/intermittency time tinter for vari-
ous XH . It is worth noting that the coexistence with other wavy vortex
flows with a larger azimuthal wave number m ¼ 3, specifically
WVF33 (4V ; k ¼ 3:61), at the given parameters is not uncommon.
However, as it is not pertinent to the present study, we refer to the dis-
cussion in our earlier work.40 In general, it seems that when the transi-
tion occurs toward WVF2 (5V; k ¼ 3:69), the average intermittency
time t interð5V; k ¼ 4:21Þ ! ð5V ; k ¼ 3:69Þ is greater than the corre-
sponding intermittency time t interð5V ; k ¼ 4:21Þ ! ð5V; k ¼ 3:85Þ
when the transition goes toward WVF2 (5V ; k ¼ 3:85) [see horizontal
dashed lines in Fig. 12(c)]. Also, for small but increasing XH , there
seems to be a similar tendency in increasing time t interð5V;
k ¼ 4:21Þ ! ð5V ; k ¼ 3:85Þ. On the other hand, no correlation
appears to exist between XH and the time t interð5V; k ¼ 4:21Þ
! ð5V; k ¼ 3:85Þ. Although there is no defined intermittent time, it

FIG. 7. As Fig. 4 for flow states ð1Þ WVF2ð5V ; k ¼ 4:21Þ (ju2;4:21j and jx2;4:21j) at control parameters sz;S ¼ 0:2 ¼ sz;M and ð2Þ WVF2 ð4V; k ¼ 3:69Þ (ju2;3:69j and
jx2;3:69j) at control parameters sz;S ¼ 0:25; sz;M ¼ 0:2. Worth to point out that for frequencies XH � 0:57, the system shows irregular intermittency as WVF2ð5V ; k ¼ 4:21Þ
loses its stability and the flow transitions to anther solution. The latter is randomly selected and either WVF2ð4V; k ¼ 3:85Þ or WVF2ð4V; k ¼ 3:69Þ. See also later discussion
and Sec. III E. Note, in (1b) and (1c) no curve for XH ¼ 0:5 as well no dotted lines for static field sz;S are shown as here WVF2ð5V; k ¼ 4:21Þ is unstable.
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seems that for a set of system parameters, there is an upper time limit
for the transition. In our case, we observed the intermittency time to
always be smaller than two periods of the alternating magnetic field
TX. To provide a better understanding of the flow dynamics, the
transitions for selected parameters together with corresponding
phase space trajectories are illustrated in Figs. 12(1)–12(3). It is
important to note that here all solutions are T2 and the correspond-
ing curves are just small segments of the complete solution.
Meanwhile, points with dotted lines illustrate the departure and
arrival from any of the solutions, while gray dots indicate the inter-
mittent behavior.

FIG. 8. Flow dynamics evolving with time t for WVF2 (5V ; k ¼ 4:21) for an alternat-
ing magnetic field with sz;S ¼ 0:2 ¼ sz;M and XH ¼ 5, shown are: (a) variation
with time of the magnetic field szðtÞ, the modal kinetic energy Ekin [Eq. (6)], moduli
jum;k j of the dominant axial Fourier amplitudes of the azimuthal modes umðz; tÞ
[Eq. (5)] of the radial flow at mid-gap, the corresponding frequencies xm;k and
the vorticity g�½þ� ¼ gðr ¼ ri ; h ¼ 0; z ¼ C=4½3C=4�. (b) Close up of (a) covering
two periods. Small arrows below the abscissa indicate time steps ti ; i 2 f1; 4g for
which snapshots are shown in Fig. 9. Red dashed line indicates x2;4:21 ¼ 0, while
magenta dot-dashed line indicates the mean value x2;4:21 ¼ �2:15. (c) Phase por-
traits in ðg�; gþÞ ¼ ðgðr ¼ ri ; h ¼ 0; z ¼ C=4Þ; gðr ¼ ri ; h ¼ 0; z ¼ 3C=4ÞÞ
plane; the inset shows the Poincar�e section for g� ¼ �500 (see vertical brown
line). Each oscillation period TH is coded by a different color and the same color
code is used for each subplot. The gray colored line in (c) indicates the diagonal
gþ ¼ g�.

FIG. 9. Flow visualizations of the temporal flow pattern reversal for WVF2
(5V ; k ¼ 4:21) with sz;S ¼ 0:2 ¼ sz;M and XH ¼ 5 for retrograde (x < 0) and
prograde (x > 0) situations at times ti ; i 2 f1; 4g as indicated in Fig. 5(c). Top
row: isosurfaces of azimuthal vorticity g ¼ 6200 [red (yellow) color indicates posi-
tive (negative) vorticity]. Middle row: radial velocity uðh; zÞ on an unrolled cylindrical
surface in the annulus at mid-gap [red (yellow) color indicates in (out) flow]. Bottom
row: contours of azimuthal velocity component v in the ðr ; hÞ plane at mid-height
(viewed from the bottom) [red (yellow) color indicates positive (negative) velocity].
Multimedia files show two periods, TX � 1:257, of the alternating field. Multimedia
available online.
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IV. CONCLUSIONS

We have discovered that under an applied external magnetic field
in a wide gap, finite length, C ¼ 10, Taylor–Couette system between
counter-rotating cylinders, there can be a reversal in the way waves
propagate for supercritical twofold symmetric wavy vortex flow
(WVF2) with dominant m ¼ 2 azimuthal wave number. Even though
different WVF2 have the same m ¼ 2 azimuthal wave number, we
observed that they can have different numbers of vortex pairs (4V and
5V) within the annulus and different axial wavenumbers. The axial
wavenumbers for 5V are k ¼ 4:21, and for 4V, they are k ¼ 3:85 and
k ¼ 3:69. Depending on other system parameters, these solutions can
be stable or unstable.

FIG. 11. Temporal flow pattern reversal for WVF2 (4V; k ¼ 3:69) with sz;S ¼ 0:45,
sz;M ¼ 0:2, and XH ¼ 5 for retrograde (x < 0) and prograde (x > 0) situations
at times ti ; i 2 f1; 4g as indicated in Fig. 10. Top row: isosurfaces of azimuthal vor-
ticity g ¼ 6200 [red (yellow) color indicates positive (negative) vorticity]. Middle
row: radial velocity uðh; zÞ on an unrolled cylindrical surface in the annulus at mid-
gap [red (yellow) color indicates in (out) flow]. Bottom row: contours of azimuthal
velocity component v in the ðr; hÞ plane at mid-height (viewed from the bottom) [red
(yellow) color indicates positive (negative) velocity]. Multimedia files show two peri-
ods, TX � 1:257, of the alternating field. Multimedia available online.

FIG. 10. Flow dynamics evolving with time t for WVF2 (4V ; k ¼ 3:69) for an alter-
nating magnetic field with sz;S ¼ 0:45, sz;M ¼ 0:2, and XH ¼ 5; shown are:
(a) variation with time of the magnetic field szðtÞ, the modal kinetic energy Ekin
[Eq. (6)], moduli jum;k j of the dominant axial Fourier amplitudes of the azimuthal
modes umðz; tÞ [Eq. (5)] of the radial flow at mid-gap, the corresponding frequen-
cies xm;k and the vorticity g�½þ� ¼ gðr ¼ ri ; h ¼ 0; z ¼ C=4½3C=4�. (b) Close up
of (a) covering two periods. Small arrows below the abscissa indicate time steps
ti ; i 2 f1; 4g for which snapshots are shown in Fig. 9. Red dashed line indicates
x2;3:69 ¼ 0, while magenta dot-dashed line indicates the mean value
x2;3:69 ¼ 0:204, which are almost indistinguishable in the figure. (c) Phase portraits
in ðg�; gþÞ ¼ ðgðr ¼ ri ; h ¼ 0; z ¼ C=4Þ; gðr ¼ ri ; h ¼ 0; z ¼ 3C=4ÞÞ plane;
the inset shows the Poincar�e section for g� ¼ �500 (see vertical brown line). The
gray colored line in (c) indicates the diagonal gþ ¼ g�.
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FIG. 12. Flow dynamics evolving with time t under alternating magnetic field with sz;S ¼ 0:2 ¼ sz;M when intermittency appears. Initial state WVF2 (5V ; k ¼ 4:21) with transi-
tion toward ð1Þ WVF2 (4V ; k ¼ 3:69) at XH ¼ 0:52, ð2Þ WVF2 (4V; k ¼ 3:85) at XH ¼ 0:55, and ð3Þ WVF3 (4V; k ¼ 3:61) at XH ¼ 0:4. (a) variation with time of the mag-
netic field szðtÞ, the modal kinetic energy Ekin [Eq. (6)], moduli jum;k j of the dominant axial Fourier amplitudes of the azimuthal modes umðz; tÞ [Eq. (5)] of the radial flow at
mid-gap, the corresponding frequencies xm;k and the vorticity g�½þ� ¼ gðr ¼ ri ; h ¼ 0; z ¼ C=4½3C=4�. (b) Corresponding phase portraits in ðg�; gþÞ plane illustrating the
transition. Intermittency while transition from WVF2 (5V ; k ¼ 4:21) toward top: WVF2 (4V ; k ¼ 3:69) at XH ¼ 0:52 and middle: WVF2 (4V ; k ¼ 4:85) at XH ¼ 0:55. Note,
only fragments of the different T2 solutions WVF2 and WVF3 are shown. (c) Intermittent time tinter vs driving frequency XH during the random transitions.
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We have studied wave propagation reversal for both static and
alternating magnetic fields. In the absence of a magnetic field, the
WVF2 moves in a retrograde manner relative to the inner cylinder
rotation. However, when we increase the strength of a static or alter-
nating magnetic field, the retrograde wave propagation slows down
and eventually becomes zero. At this point, the flow is represented by a
standing wave and then starts moving in the opposite direction,
becoming prograde. The reversal of wave propagation coincides with
the stabilization of the basic state due to increasing magnetic field
strength, both for static and alternating fields.24,27 With an axial mag-
netic field, we noticed at most one reversal. However, it is important to
note that scenarios with a second reversal have been reported under a
symmetry-breaking transverse magnetic field,24,35 and even in the
absence of any external forcing.40

When analyzing the response of the system to different flow
states of WVF2, we noticed that as the oscillation frequency XH

increases, the system’s temporal evolution decreases. In general, at
high frequencies, only the average of the externally applied magnetic
field influences the system, as the fluid’s inertia cannot keep up with
rapid changes in acceleration caused by the Kelvin force. The stability
boundary for an alternating magnetic field at high frequencies corre-
sponds to a static stability boundary, which is above the mean of the
alternating magnetic field. This happens because during one modula-
tion period, the system experiences a stronger stabilization effect when
the modulation amplitude is above the average field strength, com-
pared to the destabilization in the other half-period.

For low frequency, the static scenario is most likely approached.
In addition, we also observed intermittent behavior when one solution
becomes unstable for low frequencies. Therefore, the transition
appears random in two ways: either in time or toward different final
solutions. However, a maximum persistence time predetermined by
the system parameters can be identified, which is about two periods of
driving, but further investigations are necessary to fully understand
this behavior.

The present work indicates the impact of complex fluids under
external driving forces. As such, the variation in frequency of the alter-
nating field provides a very simple and, in particular, accurate control-
lable way to trigger the system response of the flow to be prograde or
retrograde.

In future works involving alternating magnetic fields, it would
be beneficial to focus on analyzing wavy vortices with larger azi-
muthal wavenumbers (P3) and other complex structures of modu-
lated rotating waves, such as mixed ribbons and mixed-cross spirals.
The experimental system configuration and parameters discussed in
this paper are easily accessible.31 Therefore, experiments should be
conducted to provide a comparison with the numerical results pre-
sented here. It is expected that the experimental and numerical
results will be in good agreement, especially for the onset of nonlin-
ear instabilities under static magnetic fields. The recent experimental
study by Ilzig et al.44 raises an intriguing question about the behavior
of flow structures when an alternating magnetic field is applied
instead of a static one.
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