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A B S T R A C T

We illustrate how an alternating magnetic field can restrict and suppress the generation of vortex formation
in ferrofluidic Couette flow. Therefore, the initial rotating outer cylinder (inner cylinder at rest) is brought
to an abrupt stop, which results in the generation of more complex vortex dynamics in the system, evolving
out of the initially fully laminar flow regime. The generated vortex flow structures appear to be axisymmetric
Taylor vortices. Different stages during the spin-down process are described and characterised through dynamic
quantities, such as the kinetic energy, cross-flow energy, and angular velocity flux. The presence of an
alternating magnetic field modifies these dynamics during the spin-down, which is mainly dominated by the
modulation amplitude of the alternating field. While moderate modulation amplitudes tend to minimise the
vortex formation, i.e. weaken the flow dynamics, large modulation amplitudes suppress any vortex formation.
The driving frequency only has a minor effect in general, but may allow to select between different flow
pattern within the process.
1. Introduction

To date, flow control is one of the key challenging tasks, both from a
pure theoretical perspective and in particular with a focus on industrial
applications. Rotating flows are a common choice to study the control
in fluid dynamic problems. Here, the Taylor–Couette system (TCS) [1],
the fluid flow contained in the annular gap between two, vertical and
independent moving concentric cylinders, has been proven to be a very
successful prototypical model system to understand such fundamental
concepts in hydrodynamics. Numerous works have provided deeper
insight into topics, such as global non-linear dynamics, bifurcation
theory, pattern formation, [2–9], and eventually the transition towards
turbulence [2,5,10].

Most commonly, such flow control is introduced via time-periodic
forcing [11–20]. In the TCS with classical Newtonian fluid, this is
frequently realised by the (axial or azimuthal) oscillation of one or both
cylinders. Other choices are the pulsation of an axial imposed through
flow and the application of a radial through flow (or both combined),
with the latter requiring porous cylinder walls. In all these examples,
such applied forcing requires a modification in the physical boundary
conditions.

Instead, magnetic fluids, i.e. ferrofluids [21], offer an alternative
method to realise such a periodic forcing. The great advantage lies in
the fact that the forcing can be introduced directly into the system via
a periodic modulation of the external magnetic field [22,23].

E-mail address: sebastian.andreas.altmeyer@upc.edu.

In TCS, the problem of an abrupt stoppage of the cylinder rotation
has been addressed as a way to study the instabilities of an unsteady
circular Couette flow (CCF). However, the number of works [24–26] on
this topic is rare and the most common scenario has been considered. It
is the case in which both cylinders were initially in solid body rotation
from which then (in most cases) the outer one is stopped while the inner
one remains in motion. With this setup, no final decay can be observed
as energy is still introduced to the flow through the persisting rotation
of the inner cylinder. As a result, depending on the rotation speed of
the inner cylinder, the final state can be either the Taylor vortex flow
(TVF), CCF, or even turbulence.

In the present work, we analyse the flow dynamics in the ferrofluidic
TCS considering infinite (axial periodic) cylinders with moderate gap
size (radii ratio 𝑟𝑖∕𝑟𝑜 = 0.8) and inner cylinder permanent at rest. The
numerical experiment starts at the temporal instant 𝑡 = 0, when the
initially constant rotation of the outer cylinder is abruptly stopped.
Following this event, a transient, unsteady, dynamic flow evolves,
referred to here as a spin-down phase. We observe the generation of
a centrifugally unstable flow region starting near the outer cylinder,
which eventually leads to the formation of axisymmetric, toroidally
orientated, vortex patterns, i.e. Taylor vortices (TVF). During the whole
spin-down process, various TVFs (with different numbers of vortex
pairs) and transitions between them are found within the annulus. We
investigate the flow dynamics during the spin-down in detail, when
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alternating magnetic fields with different modulation amplitudes and
frequencies are present, using a modified Niklas approach [22,27].
Therefore, various quantities, such as kinetic energy, cross-flow energy,
mode contributions, and angular velocity flux, are considered. The
modulation amplitude is found to be the dominant parameter to limit
the flow dynamics, while the modulation frequency only plays a minor
role, but may allow between different flow structures.

The paper is organised as follows. In Section 2, the system setting
and methodology are presented together with the governing equations.
The results are described and discussed in Section 3. Finally, Section 4
presents the summary and conclusion together with a future outlook.

2. System setting and parameters

2.1. Governing equations

The Taylor–Couette system (TCS) consists of two concentric, inde-
pendently rotating cylinders. For the present study, the inner cylinder
of radius 𝑟𝑖 rotates initially at 𝜔𝑖, while the outer cylinder of radius
𝑟𝑜 is held at rest. Although knowing that the Ekman vortices play a
crucial role in the dynamics of TCS, the present work has to be seen
as a first study of such vortex suppressing, and therefore, we consider
periodic boundary conditions in the axial direction with periodicity
length 𝜆 and no-slip boundary conditions on the cylinder walls. Finite
size systems will be studied in future works. The system is described
as using a cylindrical polar coordinate system (𝑟, 𝜃, 𝑧) with a velocity
field (𝑢, 𝑣,𝑤). The radius ratio of the cylinders is set to 𝑟𝑖∕𝑟𝑜 = 0.8,
nd the axial periodicity is set to 𝜆∕(𝑟𝑜 − 𝑟𝑖) = 4. The gap between the
ylinders is filled with a viscous, incompressible, isothermal ferrofluid
APG933 [28,29]).

To realise a periodic forcing in the system, we apply a sinusoidal
odulation signal to the external magnetic field, which is orientated
arallel to the system symmetry (𝑧) axis, uniform in space and har-

monic in time 𝐇𝑧 = [𝐻𝑆 + 𝐻𝑀 sin (𝛺𝐻 𝑡)]𝐞𝑧 [22,23]. It is important to
ention that such a pure axial-oriented magnetic field does not change

he basic system symmetry, only the stability thresholds are shifted
27,30,31].

The flow dynamics of a ferrofluid with kinematic viscosity 𝜈 and
ensity 𝜌 are governed by the incompressible Navier–Stokes equations,
ncluding magnetic terms, and the continuity equation. Using the gap
= (𝑟𝑜 − 𝑟𝑖) as the length scale, the diffusion time 𝜏𝐷 = 𝑑2∕𝜈 as the

ime scale, scaling pressure with 𝜌𝜈2∕𝑑2, and the magnetic field 𝐇 and
he magnetisation 𝐌 with (𝜌∕𝜇0)0.5𝜈∕𝑑 (𝜇0 is the magnetic constant,

i.e., magnetic permeability of free space), the non-dimensionalised
ferro-hydrodynamical equations of motion [22,32–34] are given as:

(𝜕𝑡 + 𝐮 ⋅ ∇)𝐮 − ∇2𝐮 + ∇𝑝 = (𝐌 ⋅ ∇)𝐇 + 1
2
∇ × (𝐌 ×𝐇),

∇ ⋅ 𝐮 = 0. (2.1)

The cylinders are no-slip with velocity boundary conditions 𝐮(𝑟𝑖, 𝜃, 𝑧) =
(0, 0, 0) and 𝐮(𝑟𝑜, 𝜃, 𝑧) = (0, 𝑅𝑒, 0), where the outer Reynolds numbers is
𝑅𝑒 = 𝜔𝑜𝑟𝑜𝑑∕𝜈, which is initially held constant at 𝑅𝑒 = 1700 before the
abrupt stoppage at 𝑡 = 0.

To solve Eq. (2.1), one needs an equation that describes the magneti-
sation of the ferrofluid. Here we consider the equilibrium magnetisation
of an unperturbed state, in which homogeneously magnetised ferrofluid
is at rest, and the mean magnetic moment is orientated in the direction
of the magnetic field; we have 𝑀𝑒𝑞 = 𝜒𝐻 . The magnetic susceptibility 𝜒
of the ferrofluid can be approximated with the Langevin formula [35],
where we assume an initial value 0.9 and use a linear magnetisation
law. Further, we consider the near equilibrium approximations of
Niklas with small deviations ‖𝑀 −𝑀𝑒𝑞‖ and small magnetic relaxation
ime 𝜏: |∇ × 𝑢|, 𝜏 ≪ 1. A detailed description of the elimination process
an be found in the Appendix in [22].

By using a modified Niklas approach [22,27,30,34] the effect of
49

he magnetic field and the magnetic properties of the ferrofluid on 𝑢
the velocity field can be characterised by a single (time-dependent)
parameter:

𝑠𝑧(𝑡) = 𝑠𝑧,𝑆 + 𝑠𝑧,𝑀 sin (𝛺𝐻 𝑡), (2.2)

ith 𝑠𝑧,𝑆 being the static contribution of the driving 𝑠𝑧,𝑀 the modulation
mplitude, and 𝛺𝐻 the modulation frequency. The exact procedure of
ow to solve the ferro-hydrodynamical equations of motion (2.1) is
xplained in detail in earlier works [22,23,36].

.2. Numerics

Considering the near equilibrium approximation by Niklas [27],
he magnetisation in the ferro-hydrodynamical equations of motion
2.1) can be eliminated, and the equations are solved by combining
standard, second-order, finite-difference scheme in (𝑟, 𝑧) with a spec-

ral decomposition in 𝜃 and (explicit) time splitting [22,30,33]. The
ariables can be expressed as follows:

(𝑟, 𝜃, 𝑧, 𝑡) =
𝑚max
∑

𝑚=−𝑚max

𝑓𝑚(𝑟, 𝑧, 𝑡) 𝑒𝑖𝑚𝜃 , (2.3)

here 𝑓 denotes one of the variables {𝑢, 𝑣,𝑤, 𝑝}. For the parameter
egimes considered, the choice 𝑚max = 16 provides adequate accuracy.
e use a uniform grid with spacing 𝛿𝑟 = 𝛿𝑧 = 0.02 and time steps
𝑡 < 1∕3800.

For diagnostic purposes, we also evaluate the complex mode am-
litudes 𝑓𝑚,𝑛(𝑟, 𝑡), obtained from a Fourier decomposition in the axial
irection:

𝑚(𝑟, 𝑧, 𝑡) =
∑

𝑛
𝑓𝑚,𝑛(𝑟, 𝑡)𝑒𝑖𝑛𝑘𝑧, (2.4)

here 𝑘 = 2𝜋𝑑∕𝜆 is the axial wavenumber.

.3. Nomenclature

Here we investigate flow structures in a (relatively) short periodic
nnulus with axial periodicity length 𝛤 = 4. A common feature
hared by all flow structures evolving during spin-down is that the
xisymmetric Fourier mode associated with the azimuthal wavenum-
er, 𝑚 = 0 (Eq. (2.3)), is dominant. Thus, the resulting flow states
orrespond to toroidally closed solutions. With the stoppage of the
uter cylinder, the corresponding laminar boundary layer undergoes a
rimary centrifugal instability. This results in the formation of coherent
Taylor) rolls identifying the Taylor vortex flow (TVF). Taylor vortex
low with various different numbers of vortex pairs are found, which
ill be distinguished by an index 𝑖 characterising the corresponding
umber of vortex pairs. For instance, TVF5 identifies a TVF with 5 pairs
f Taylor rolls, which in total means the presence of 10 vortices within
he bulk [identified by a dominant mode amplitude 𝑢0,5 (Eq. (2.4))].
ariation in the number of vortex pairs results in transitions (in quite a
hort amount of time) between different TVFs. It is worth mentioning,
hat the dynamics of the TVFs detected here are different to other
imilar-looking flow states that can be found in the finite TCS. These are
tationary, non-propagating vortex states [37], with different numbers
f vortices present in the annulus as well as non-stationary propagat-
ng vortex states [36,38–40]. The latter, time-dependent states, have
atural, intrinsic axial dynamics, also without any external driving
orce.

. Results

.1. Evolving flow dynamics

We start with the flow dynamics evolving after the abrupt stop (at
= 0) of the outer cylinder rotation in the absence of any magnetic

ield. Therefore, Fig. 1 illustrates space–time plots of the radial velocity

(𝑟 = 𝑟𝑖 + 𝑑∕2, 𝜃, 𝑧) (at mid-gap) and azimuthal vorticity 𝜂 = 𝜕𝑧𝑢 − 𝜕𝑟𝑤,
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Fig. 1. Flow dynamics evolving with time 𝑡 during the spin-down in the absence of
a magnetic field (𝑠𝑧(𝑡) = 0). Shown here are space–time plots of the radial velocity
(𝑎) 𝑢(𝑟 = 𝑟𝑖 + 𝑑∕2, 𝜃, 𝑧) and azimuthal vorticity (𝑏) 𝜂(𝑟 = 𝑟𝑖 , 𝜃, 𝑧) (red (dark gray)
and yellow (light gray) correspond to positive and negative values). Dominant mode
amplitudes |𝑢𝑚,𝑛| (cf. Eq. (2.4)) of the radial velocity field at mid-gap contributed from
the (𝑐) axisymmetric modes (0, 𝑛) and (𝑑) non-axisymmetric modes (1, 𝑛). The time steps
𝑡𝑖 , 𝑖 ∈ {1, 5} for which snapshots are shown in Fig. 4 are represented as green dashed
lines. (The amplitudes of all modes with higher azimuthal wavenumbers, 𝑚 ≠ 0, are
several orders smaller and do not play a role in the evolving flow dynamic (Fig. 1)
and therefore, are not shown hereafter.) Note the different scaling in (𝑐, 𝑑).

here 𝜂(𝑟 = 𝑟𝑖, 𝜃, 𝑧) (at the inner cylinder), together with time series
of mode amplitudes |𝑢𝑚,𝑛| of the radial velocity field at mid-gap, con-
tributed from the modes (𝑚, 𝑛) as indicated. It is worth recalling that the
initial state at 𝑡 = 0 is given by the CCF. It takes about 0.083 (diffusion
times) before one observes the formation of any vortex structures in the
bulk. Here, an initial TVF7 state with dominant toroidal flow dynamics
including a total of 14 vortices (axial wavelength 𝜆 = 0.286 wavenumber
𝑘 = 21.99) is formed. This flow evolves and transition very fast into
other TVFs due to the elimination of vortex pairs. To be precise, the
initial TVF7 first transfers into TVF6 (𝜆 = 0.333, 𝑘 = 18.849) at 𝑡 ≈ 0.118,
followed by TVF5 at 𝑡 ≈ 0.148 (𝜆 = 0.4, 𝑘 = 15.708) towards TVF4 at
𝑡 ≈ 0.238 (𝜆 = 0.5, 𝑘 = 12.566). The latter, TVF4, persists in the system
the longest before it vanishes over a very short period from 𝑡 ≈ 0.368
over a sequence of flow states, TVF4→TVF6→TVF2, before eventually
at 𝑡 ≈ 0.4, all complex flow dynamics in the bulk disappear. Thus, the
overall persistence time in which any TVFs are present in the bulk is
𝑡pers ≈ 0.317. Generally, the space–time plots of 𝜂 at the inner cylinder
wall feature in fewer dynamics than the corresponding ones at mid-gap.
Moreover, any dynamics also appears significant later (𝑡 ≈ 0.16), as the
information and evolution of the flow structures have to travel from its
origin at the (former) rotating outer cylinder through the bulk towards
the inner cylinder.

Starting with CCF at 𝑡 = 0, all radial mode amplitudes |𝑢𝑚,𝑛|
(Fig. 1(𝑐, 𝑑)) grow from zero and become significant with the formation
of the Taylor vortices. Thereby, the dominant mode dictates the corre-
sponding TVF state. For instance, at 𝑡 ≈ 0.2, the mode amplitude 𝑢0,5
(cf. Eq. (2.4)) is dominant, characterising TVF5 with 5 pairs of vortices,
indicating 10 vortices in the bulk as visible by the 10 contour lines
in the space–time plot Fig. 1(𝑎). All evolving flow dynamics illustrate
toroidal flow structures dominated by the azimuthal 𝑚 = 0 mode.
The variation in the dominant mode amplitudes |𝑢𝑚,𝑛| highlights the
transition between the different TVFs. All higher azimuthal modes,
𝑚 ≠ 0, corresponding to higher azimuthal wavenumbers are at least
3 orders of magnitude smaller (Fig. 1(𝑑)) and therefore negligible.

In the presence of an oscillating magnetic field with moderate
field amplitude 𝑠𝑧,𝑀 = 0.4 (Fig. 2), we found qualitatively similar
flow dynamics as in the absence of any magnetic field. However, the
initial evolving TVF depends on the driving frequency 𝛺 . While the
50

𝐻

Fig. 2. Flow dynamics evolving with time 𝑡 during spin-down for moderate field
modulation amplitude 𝑠𝑧,𝑀 = 0.4. Shown here are space–time plots of (1) radial velocity
𝑢(𝑟 = 𝑟𝑖+𝑑∕2, 𝜃, 𝑧), (2) azimuthal vorticity 𝜂(𝑟 = 𝑟𝑖 , 𝜃, 𝑧) (red (dark gray) and yellow (light
gray) correspond to positive and negative values), and (3) corresponding dominant
mode amplitudes |𝑢0,𝑛| of the radial velocity field at mid-gap (cf. Fig. 1). The modulation
frequencies are (𝑎) 𝛺𝐻 = 100, (𝑏) 𝛺𝐻 = 500, and (𝑐) 𝛺𝐻 = 1000. The time steps
𝑡𝑖 , 𝑖 ∈ {1, 5}, for which snapshots are shown in Fig. 4, are represented as green dashed
lines. Note that the different scaling in (3) depends on 𝛺𝐻 .

Fig. 3. As Fig. 2, but for strong field modulation amplitude 𝑠𝑧,𝑀 = 1.0. Note, that the
mode amplitudes (3) |𝑢𝑚,𝑛| are three orders of magnitude smaller than in the case of
moderate field modulation amplitude 𝑠𝑧,𝑀 = 0.4.

number of formed Taylor vortices first decreases with increasing 𝛺𝐻
from TVF6 at 𝛺𝐻 = 100 to TVF5 at 𝛺𝐻 = 500, for larger driving
frequency 𝛺𝐻 = 1000, it is similar to the scenario without a magnetic
field with the initial formation of TVF7. Interestingly, for 𝛺𝐻 = 100
and 𝛺𝐻 = 500, the space–time plots of 𝜂 at the inner cylinder wall
(Fig. 2(𝑎2, 𝑏2)) do not display any complex flow dynamics, which, in
contrast, can be seen for 𝛺𝐻 = 1000 (Fig. 2(𝑐2)). In general, all mode
amplitudes 𝑢𝑚,𝑛 are significantly smaller in comparison to the absence
of an alternating magnetic field. For 𝑠𝑧,𝑀 = 0.4 all mode amplitudes
𝑢𝑚,𝑛 become much smaller, only about 1/4 for 𝛺𝐻 = 100 and even only
about 1/8 for 𝛺𝐻 = 500, compared to those with no magnetic field
present. Meanwhile, the evolution with time of the modes (Fig. 2(3))
remains qualitatively similar as discussed before. As a result of the
smaller modes, all flow structures appear weaker. However, for 𝛺𝐻 =
1000, the flow dynamics are enforced in comparison to the one observed
at smaller driving frequencies 𝛺 = 100 and 500, visible also in
𝐻
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Fig. 4. Visualisation of the flow dynamics during spin-off. (𝑎) In the absence of a magnetic field and with modulation amplitude 𝑠𝑧,𝑀 = 0.4, oscillation frequency (𝑏) 𝛺𝐻 = 100, (𝑐)
𝛺𝐻 = 500, and (𝑑) 𝛺𝐻 = 1000. Shown here are isosurfaces of the azimuthal vorticity 𝜂 [red (dark gray) and yellow (light gray) colors correspond to positive and negative values]
[left panel], together with the vector plot [𝑢(𝑟, 𝑧), 𝑤(𝑟, 𝑧)] of the radial and axial velocity components (including the azimuthal vorticity) [right panel]. Time steps 𝑡𝑖 , 𝑖 ∈ {1, 5} are
highlighted by dashed green lines in Figs. 1(𝑐, 𝑑), and 2(𝑐), respectively. (For larger modulation amplitude 𝑠𝑧,𝑀 = 1, no similar flow structures have been detected, as all complex
flow dynamics are basically suppressed.) Note the different contour levels chosen in the different subplots.
the notably larger mode amplitudes (about 1/2 compared to those
without a magnetic field). Consistently one also observes stronger flow
dynamics at the inner cylinder wall. Further, for high 𝛺𝐻 = 1000,
the dominant flow structure appears to be TVF4, indicated by the
dominance of 𝑢0,4 (representing 4 vortex pairs). (The amplitudes of all
modes with higher azimuthal wavenumbers, 𝑚 ≠ 0, are several orders
smaller and do not play a role in the evolving flow dynamics (Fig. 1)
and are therefore not shown here or hereafter.)

Applying an alternating field with an even larger modulation ampli-
tude 𝑠𝑧,𝑀 = 1 (Fig. 3) results in further and much stronger modification
in the flow dynamics. All vortex formation becomes suppressed and
only the roots (backbone) of such a formation remain visible in the
space–time plots 𝑢(𝑟, 𝜃, 𝑧) (Fig. 3(𝑎)). At the inner cylinder any dynamics
are absent, as the information, i.e. the perturbation introduced at the
outer cylinder, simply does not reach the inner cylinder at all. This
suppressing behaviour is also visible in the evolution in the mode
amplitudes 𝑢0,𝑛 (Fig. 3(𝑐)), which appear to be about a further 3 orders
of magnitude smaller and thus below the level that any Taylor vortices
can form.

Fig. 4 illustrates different visualisations of TVFs and transitions
between them as they are found to appear during the spin-down
process. The corresponding time steps are indicated by green dashed
lines in Fig. 1(𝑐, 𝑑) and Fig. 3(𝑐), respectively. The former described
the weakening effect of the flow dynamics within the different TVFs,
indicated by the decrease in the value 𝜂, for which the isosurfaces are
presented. The larger the number, the larger the corresponding vortex
structure. Note, that for larger modulation amplitude 𝑠𝑧,𝑀 = 1, all
complex dynamics are mainly suppressed and therefore no similar flow
structures have been found.
51
Fig. 5. Variation with frequency, 𝛺𝐻 , for the persistence time 𝜏pers(TVF) of TVFs within
the bulk for 𝑠𝑧,𝑀 = 0.4 and (𝑏) 𝑠𝑧,𝑀 = 1.0 (horizontal dashed line illustrates the scenario
in the absence of a magnetic field). Note, that for 𝑠𝑧,𝑀 = 1.0, 𝜏pers(TVF) is a combined
approximation, as no full TVFs appear (see text for further details).

If an alternating magnetic field is present, a common observation
is that any complex flow dynamics appears later after the abrupt
stoppage, and at the same time also disappears earlier in comparison to
the scenario without the presence of any magnetic field. Together, they
result in a shrinking and squeezing in the persistence time 𝜏pers(TVF)
for which TVFs are present within the bulk (Fig. 5). Note that for
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Fig. 6. Time series of (𝑎) total kinetic energy 𝐸𝑘𝑖𝑛 for 𝑠𝑧(𝑡) = 0 and (𝑏) differences
𝐸𝑘𝑖𝑛 = 𝐸𝑘𝑖𝑛[𝑠𝑧(𝑡)] − 𝐸𝑘𝑖𝑛[𝑠𝑧(𝑡) = 0] in comparison with alternating fields for moderate

modulation amplitude 𝑠𝑧,𝑀 = 0.4, and for large modulation amplitude 𝑠𝑧,𝑀 = 1.0
t different frequencies 𝛺𝐻 = 100, 500, 1000 as indicated. (𝑐) Time series of the
orresponding cross-flow energy 𝐸𝑐𝑓 .

𝑧,𝑀 = 1.0, no fully developed TVFs appear, only the roots of such
lows can be detected; here 𝜏pers(TVF) is a combined approximation
ased on the space–time plots (Fig. 2(2)), together with the variation in
he time-evolution of the dominant mode amplitudes |𝑢0,𝑛| (Fig. 2(3)).
or any modulation amplitude, with increasing driving frequency 𝛺𝐻 ,
he persistence time 𝜏pers(TVFs) first decreases before for high 𝛺𝐻 , and
𝜏pers(TVFs) increases. However, 𝜏pers(TVFs) always remains below the
corresponding time 𝜏𝑠𝑧(𝑡)=0pers (TVFs) in the absence of any magnetic field.
One possible speculation for this detected non-monotonous behaviour
may be the appearance of resonance effects, which could be supported
by similar recent observations [23]. The decrease in 𝜏𝑝𝑒𝑟𝑠(TVF) for 𝛺𝐻 =
1100 (Fig. 5) can be seen as another indicator for this speculation.

3.2. Kinetic energy and cross-flow energy

After the qualitative analysis of the evolving flow dynamics during
the spin-down, we will now focus on different quantitative measures.

As a global quantity to characterise the flow, we use the following
modal kinetic energy

𝐸𝑘𝑖𝑛 =
∑

𝑚
𝐸𝑚 = 1

2 ∫

2𝜋

0 ∫

𝛤∕2

−𝛤∕2 ∫

𝑟𝑜

𝑟𝑖
𝐮𝑚𝐮∗𝑚𝑟d𝑟d𝑧d𝜃, (3.1)

where u𝑚 (u∗𝑚) is the 𝑚th (complex conjugate) Fourier mode of the
velocity field (Eq. (2.3)).

Further, to study the flow characteristics, we also consider the
cross-flow energy [41],

2 2
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𝐸𝑐𝑓 (𝑡) = ⟨𝑢𝑟 + 𝑢𝑧⟩𝑟,𝜃,𝑧. (3.2) o
Fig. 7. Radial decay process in the mean (averaged) azimuthal velocity ⟨𝑣(𝑟)⟩𝜃,𝑧 for
imes 𝑡 as indicated for (𝑎) 𝑠𝑧,𝑀 = 0.4 and (𝑏) 𝑠𝑧,𝑀 = 1.0. The curves for different
riving frequencies, 𝛺𝐻 , fall together and are indistinguishable.

Although the variation with time of the total kinetic energy 𝐸𝑘𝑖𝑛
Fig. 6(𝑎)) is similar, one can observe differences if an alternating mag-
etic field is present. An alternating magnetic field slightly decreases
𝑘𝑖𝑛, as visible in the positive values 𝛥𝐸𝑘𝑖𝑛 = 𝐸𝑘𝑖𝑛(𝑠𝑧(𝑡)) −𝐸𝑘𝑖𝑛(𝑠𝑧(𝑡) = 0)

Fig. 6(𝑏)). While for moderate mode amplitude 𝑠𝑧,𝑀 = 0.4 and small to
oderate frequencies 𝛺𝐻 = 100 and 500, 𝛥𝐸𝑘𝑖𝑛

increases, for very high
scillation frequency 𝛺𝐻 = 1000, one observes an opposite behaviour
ith a clear decrease in 𝛥𝐸𝑘𝑖𝑛

. Larger modulation amplitude results in
n increase in the differences 𝛥𝐸𝑘𝑖𝑛. Notably, for 𝑠𝑧,𝑀 = 1 the curves
or different 𝛺𝐻 all fall together, and therefore are indistinguishable.

In contrast to 𝐸𝑘𝑖𝑛 (𝛥𝐸𝑘𝑖𝑛) the corresponding cross-flow energy
𝑐𝑓 (𝑡) within the system decreases in comparison with to the scenario

n absence of any field (Fig. 6(𝑐)). As seen for 𝐸𝑘𝑖𝑛 also 𝐸𝑐𝑓 (𝑡) is
ndistinguishable for large modulation amplitude 𝑠𝑧,𝑀 = 1. The value
emains very small confirming the former already mentioned fact that
irtual now more complex flow dynamics, e.g. the formation of Taylor
ortices appears. Meanwhile, for 𝑠𝑧,𝑀 = 0.4 and 𝛺𝐻 = 1000, 𝐸𝑐𝑓
ncreases in comparison to smaller driving frequencies 𝛺𝐻 = 100 and
00.

Another important aspect is the decay of the azimuthal velocity
rofile ⟨𝑣(𝑟)⟩𝜃,𝑧 as a function of time. Fig. 7 shows the azimuthal
elocity profile at different time steps (see also Figs. 1 and 2). Here,
he azimuthal velocity is averaged axially and at each instant of time. A
ew selected time-steps were chosen to present the evolution of the flow
ynamics. The initial profile at 𝑡 = 0 is the analytic laminar profile, the
CF profile. Then, after the abrupt stoppage of the outer cylinder, the
ext profiles (𝑡 = 0.025 and 𝑡 = 0.05) remain close to the Couette flow
n the first half of the gap (1 ≲ 𝑟 ≲ 0.5), then reach a maximum value
ithin the outer half (𝑟 ≈ 1.6 − 1.7), and decrease towards zero at the

uter cylinder wall. For the following time steps, the profiles remain
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Fig. 8. (𝑎) Total decay process of mean (averaged) azimuthal velocity ⟨𝑣(𝑡)⟩𝑟,𝜃,𝑧 versus
ime 𝑡 for 𝑠𝑧,𝑀 and 𝛺𝐻 , as indicated. (𝑏) Radial profile of mean (averaged) azimuthal
elocity (cf. Fig. 7(𝑎), modulation amplitude 𝑠𝑧,𝑀 = 0.4) normalised with its spatial
ean value, ⟨𝑣(𝑟)⟩𝜃,𝑧∕⟨𝑣⟩𝑟,𝜃,𝑧. The solid line with circles and dashed line with squares

ndicate the variation with time in the maxima in the corresponding profiles.

ualitatively the same, while continuously flattening, i.e. becoming
maller. Thereby, the maxima in the profiles remain located in the
entre region (at mid-gap, 𝑟 ≈ 1.5) of the bulk. For 𝑡 = 0.4 the profile
lmost reaches zero.

Fig. 8(𝑎) presents the evolution of the mean azimuthal velocity,
𝑣(𝑡)⟩𝑟,𝜃,𝑧, concerning time. During the decay, the mean azimuthal
elocity does not follow a single power law, whereby the curves for
ifferent mode amplitudes remain the same qualitatively, but differ in
heir quantity. However, the curves for the same modulation amplitude
𝑧,𝑀 , but different oscillation frequencies 𝛺𝐻 are indistinguishable.
n agreement with the former observation, with increasing 𝑠𝑧,𝑀 , the
inetic energy, 𝐸𝑘𝑖𝑛, increases while the cross-flow energy, 𝐸𝑐𝑓 , de-
reases. Here the azimuthal velocity ⟨𝑣(𝑡)⟩𝑟,𝜃,𝑧 becomes largest with
ncreasing 𝑠𝑧,𝑀 . Fig. 8(𝑏) presents the self-similarity picture for the
adial profile azimuthal velocity during the spin-down process for
oderate modulation amplitude 𝑠𝑧,𝑀 = 0.4. Velocity profiles were

averaged axially and over time, and then normalised with their spatial
average (cf. Fig. 7(𝑎)). Although the maxima in the profiles are initially
ifferent, i.e. they are smaller in the presence of an alternating field,
hey move similarly in a short amount of time (independent of the field)
owards the centre region 𝑟 ≈ 1.5. Thereby, the corresponding maxima
lso approach each other in magnitude, before they are almost identical
or 𝑡 = 0.4.

.3. Momentum flux and cross-flow energy

The conserved transported quantity between two cylinders can be
xpressed in terms of the angular velocity flux:

= 𝑟3(⟨𝑢𝑣∕𝑟⟩ − 𝜈𝜕 ⟨𝑣∕𝑟⟩ ) (3.3)
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𝜔 𝐴(𝑟) 𝑟 𝐴(𝑟) p
Fig. 9. Variation with time 𝑡 in the two contributions 𝐽𝑑𝑖𝑓𝑓 and 𝐽𝑎𝑑𝑣 of the angular
elocity flux 𝐽𝜔 (Eq. (3.3)). (𝑎) 𝐽𝑑𝑖𝑓𝑓 with and without magnetic field: the curves fall
ogether. (𝑏) 𝑠𝑧,𝑀 = 0.4, (𝑐) 𝑠𝑧,𝑀 = 1.0. Note, the different scaling in (𝑐) and that here
lso all curves for different frequencies 𝛺𝐻 fall together.

= 𝐽𝑑𝑖𝑓𝑓 + 𝐽𝑎𝑑𝑣,

here 𝐴(𝑟) stands for the averaging over the surface of a concentric
ylinder at radius 𝑟. The two contributions, 𝐽𝑑𝑖𝑓𝑓 = 𝑟3(⟨𝑢𝑣∕𝑟⟩𝐴(𝑟)) stand-
ng for the averaged diffusive contribution, and 𝐽𝑎𝑑𝑣 = −𝑟3𝜈𝜕𝑟⟨𝑣∕𝑟⟩𝐴(𝑟)
or the advective contribution, are also called molecular transport [41].
he total angular velocity flux 𝐽𝜔 is dominated by the diffusive con-
ribution 𝐽𝑑𝑖𝑓𝑓 , which is several orders of magnitude larger compared
o the advective contribution 𝐽𝑎𝑑𝑣. For both modulation amplitudes
𝑧,𝑀 = 0.4 and 𝑠𝑧,𝑀 = 1.0, no differences are visible in 𝐽𝑑𝑖𝑓𝑓 (Fig. 9),
he curves lie on top of each other. On the other hand, such differences
ppear in 𝐽𝑎𝑑𝑣 (Fig. 9(𝑏, 𝑐)).

For moderate modulation amplitude 𝑠𝑧,𝑀 = 0.4, one finds a qual-
tatively similar behaviour in 𝐽𝑎𝑑𝑣 as in the absence of an alternating
ield, whereby the contributions 𝐽𝑎𝑑𝑣 are notably smaller, at least one
rder of magnitude. Further, 𝐽𝑎𝑑𝑣 is different, depending on the driving
requency 𝛺𝐻 , with the largest contribution appearing with the highest
requency 𝛺𝐻 = 1000. For large modulation amplitude 𝑠𝑧,𝑀 = 1,
ndependent of the driving frequency 𝛺𝐻 , basically any contribution
n 𝐽𝑎𝑑𝑣 disappears, indicating the suppression of vortex formation.

To get a better understanding of the flow dynamics and evolution in
he bulk, Fig. 10 illustrates the contributions 𝐽𝑑𝑖𝑓𝑓 and 𝐽𝑎𝑑𝑣 (Eq. (3.3))
ersus the radius 𝑟 for different time steps 𝑡𝑖 as indicated (Fig. 9(𝑎)).
ote that here we only present results for 𝑠𝑧,𝑀 = 0.4, and we avoid
resenting similar results for 𝑠𝑧,𝑀 = 1, as any vortex formation is
uppressed. The corresponding values of 𝐽𝑎𝑑𝑣 are more than 2 orders
f magnitude smaller compared to those for 𝑠𝑧,𝑀 = 0.4.

As mentioned before, the diffusive contribution 𝐽𝑑𝑖𝑓𝑓 is by far the
ominant one in the full momentum flux 𝐽𝜔. This holds for any time
tep 𝑡𝑖. Moreover, virtually no difference can be found in the presence
r absence of an alternating field (Fig. 10(𝑎)), as all curves at the
orresponding time 𝑡𝑖 fall together. With increasing time 𝑡𝑖, the profiles
𝑑𝑖𝑓𝑓 (𝑟) continuously flatten out in the approach to reach zero, as seen
n Fig. 9(𝑎). Although, about 3 to 4 orders are of smaller magnitude, the

rofiles 𝐽𝑎𝑑𝑣(𝑟) illustrate a clear maximum in the outer half of the bulk
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Fig. 10. Variation in the two contributions (𝑎) 𝐽𝑑𝑖𝑓𝑓 and (𝑏) 𝐽𝑎𝑑𝑣 (Eq. (3.3)) versus the
radius 𝑟 for five different time steps, 𝑡𝑖, 𝑖 ∈ {1, 5}, as indicated in the absence of a field
and moderate modulation amplitude 𝑠𝑧,𝑀 = 0.4.

𝑟 ≈ 1.7) for time step 𝑡3, when the temporal generated TVF is present in
he bulk. This holds similar for any modulation frequency 𝛺𝐻 , whereby

if an oscillating field is present, 𝐽𝑎𝑑𝑣 is a minimum of 2 orders of
agnitude smaller (see ordinate axis in Fig. 10(𝑏)) in comparison to

the situation without any magnetic field.

4. Conclusion and discussion

In this study, we investigated the instantaneous stoppage of the
outer cylinder rotation in the Taylor–Couette system (inner cylinder at
rest at all time), considering a ferrofluid under the influence of alter-
nating magnetic fields. With the initial presence of a pure laminar flow,
such an abrupt stoppage leads to the generation, and consequently, the
decay of vortex dynamics due to the absence of any further driving
force. The reference scenario is given by the system in the absence of
any field. The following process is observed here: the stoppage induces
the generation of a centrifugally unstable flow region near the outer
cylinder. This leads to the formation of an axisymmetric vortex flow
pattern — Taylor vortices with different numbers of vortex pairs within
the annulus. All evolving flow structures during the spin-down process
are toroidally orientated with dominant azimuthal 𝑚 = 0 modes, higher
azimuthal modes 𝑚 > 0 can be neglected. While the mean azimuthal
velocity continuously decreases during the whole decay process, the
growth of the vortices is accompanied by continuous re-adjustments
as they grow and propagate towards the inner cylinder. Within this
process the corresponding cross-flow energy 𝐸𝑐𝑓 increases, reaching a
maximum at the time when the whole gap is filled with the axisymmet-
ric flow, and decaying with the re-organisation of the flow structures.
54
Following the formation of the strongest structure the viscous diffusion
is dominating the last phase with the transition over different TVFs,
continuously reducing the number of vortex pairs, until eventually,
all flow dynamics disappear in the bulk. It is worth mentioning that
the cross-flow energy 𝐸𝑐𝑓 always remains smaller in comparison to
the scenario in the absence of any magnetic field 𝑠𝑧(𝑡) = 0. Besides
𝐸𝑐𝑓 shows a non-monotonous behaviour, an increase is found for the
largest oscillation frequency 𝛺𝐻 = 1000 at fixed modulation amplitude
𝑠𝑧,𝑀 = 0.4. Based on recent findings [23], one can speculate that this
riginates in resonances in the system.

The presence of an alternating magnetic field has a direct effect
n the evolving flow characteristics, and the flow dynamics in the
ystem become limited. In the case of moderate modulation amplitude
𝑧,𝑀 = 0.4, the flow structures become weaker, i.e. the azimuthal
orticity within the Taylor vortices becomes smaller. However, similar
low dynamics can be found in the absence of a magnetic field, with the
eneration of TVFs and their decay in a sequence of transitions between
ifferent TVFs. Any variation in the driving frequency 𝛺𝐻 mainly re-

sults in the formation of different dominant TVFs. Various characteristic
quantities, such as mode amplitudes, and cross-flow energy, are found
to be about 3 orders of magnitude smaller. In addition, the persistence
time of the temporal evolving TVFs also becomes smaller when an
alternating field is present.

For large modulation amplitude 𝑠𝑧,𝑀 = 1.0, the evolution and for-
ation of any more complex flow dynamics, e.g. TVFs, are suppressed,

nd only the roots (backbone) of such dynamics remain as reminiscence
bservable in the system (various quantities are found to be about 6
rders of magnitudes smaller). For such large modulation amplitudes,
ny variation in the oscillation frequency, 𝛺𝐻 is negligible.

This behaviour can be understood by and related to the total decay
rocess of mean azimuthal velocity during the spin-down. With increas-
ng modulation amplitude, the corresponding mean azimuthal velocity
ncreases, in particular for the initial time after the abrupt stoppage,
hile at the same time, the kinetic energy decreases and the cross-

low energy increases. These processes together limit the possibility
or any information (perturbation) to travel through the bulk, from the
uter towards the inner cylinder. In addition, the persistence time for
etected more complex flow dynamics, TVFs, is reduced.

Thus, an alternating magnetic field can control the flow after an
brupt stoppage of the outer cylinder rotation in TCS. Such a magnetic
ield suppresses (o at leas minimises) the growing of the circular insta-
ility near the outer cylinder during the spin-down process. Therefore,
t controls and mainly limits the effect of any enhanced mixing, if not
esired, due to the suppression of any complex flow dynamics, here in
articular the formation of Taylor vortices. Four key points for future
tudies are: first, the exploration of a wider parameter space. Second
he effect on other, more complex flow structures, e.g. spirals, wavy
ortices, etc. Third, the conditions when an oscillating magnetic field
an be replaced by the time averaged value. Fourth, most important,
he consideration of realistic, finite size system. Here, the omni present
kman vortices may affect the whole dynamic. Besides this may provide
aluable insight for industrial Taylor flow in reactors and other devices,
.e. Taylor reactor, centrifugal extractors, biological reactors, and filtra-
ion devices [42–44], just to name a few. Moreover, it remains to be
een, how this flow dynamics in combination with alternating magnetic
ields will unfold at larger Reynolds numbers and here in particular for
hose when turbulence appears in the system. Experimental analysis is
lways valuable. However, numerical studies can provide ideas or hint
t solutions.
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