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A B S T R A C T

Despite time-dependent boundary conditions being ubiquitous in natural and industrial flows, to date the
influence of such temporal modulations (e.g. with driving frequency 𝛺𝐻 ) has been given minor attention.
The present problem addresses ferrofluidic Couette flow in between counter-rotating cylinders in a spatially
homogeneous magnetic field subject to time-periodic modulation. Such a modulation can lead to a significant
inner Reynolds number (𝑅𝑒𝑖) enhancement for both, either helical and toroidal flow structures. Using a
modified Niklas approximation, the effect of low- and high-frequency modulation onto the primary instabilities,
stability boundaries as well as on the non-linear oscillations that may occur is investigated. Focusing on bi-
stable co-existing solutions, around their stability thresholds quite complex non-linear system response and flow
dynamics is detected. For the system remaining supercritical always a single solution is selected by 𝛺𝐻 , while
crossing the bifurcation thresholds within a modulation period the triggered system response is more complex,
reaching from alternation between different solutions towards the appearance of intermittent behavior.
1. Introduction

The system setup of two concentric cylinders with different radii
which can rotate independently of each other – Taylor–Couette system
(TCS) [1,2] – and external temporally forcing presents paradigm prob-
lem for the parametric control of flow instability and pattern formation.
Consider classical TCS with Newtonian fluid such forcing has been
typically imparted mechanically into the system. Most common types
are harmonically modulated rotations of either the inner or outer
cylinder (or both), harmonic oscillations of one cylinder in the axial
direction, pulsation of an axial imposed flow or even radial through
flow [3–12]. However, all these works have one thing in common; the
new effects and resulting flow modifications are introduced by modified
boundary conditions.

Instead, consider a magnetic fluid, e.g. a ferrofluid [13,14], offers
the unique advantage to maintain a stationary setup while introducing
any periodic forcing direct into the fluid within the bulk exposed to
external magnetic fields. Thereby ferrofluids, are a suspension of per-
manently magnetized colloidal particles, which present a scientifically
and commercially important realization of magnetic fluids [13,14]. Me-
chanical, magnetic, and chemical properties make ferrofluids of interest
in the design of microfluidic pumps driven by alternating or rotating
magnetic fields. Within ferrofluids the magnetization 𝐌 is often not
collinear with the applied magnetic field 𝐇 resulting from coupling of
viscous and magnetic torques with rotational Brownian motion, which
can result in significant changes in flow structures and dynamics. So
far various numerical and experimental studies of ferrofluidic Couette

E-mail address: sebastian.andreas.altmeyer@upc.edu.

flows consider static magnetic fields focusing on different field orienta-
tions, agglomeration, internal magnetization and other effects [15–26].
Common conclusion of all these works is the fact that a stationary
magnetic field, independent its orientation stabilizes the basic state
(Circular Couette flow, CCF), i.e. the bifurcation threshold of the pri-
mary instabilities are shifted to larger values of the control parameter
(most common the inner Reynolds number 𝑅𝑒𝑖). Special focus has also
been given to the magneto-viscous effect, i.e. the increase in viscosity
of a ferrofluid in presence of a magnetic field [13,27,28]. Physical
explanation is that a present magnetic field causes a partial orientation
of magnetic moments of the particles, and thereby preventing their
free rotation in the flow. However, in an alternating magnetic field the
additional viscosity is negative at high driving frequencies and positive
at low driving frequencies [29]. This is a consequence of an induces
rotatory oscillations of the particles by the alternating field, without
any favored direction of rotation, i.e. zero in average. The final non-
zero angular velocity of the particles is caused by the presence of shear,
which breaks down the degeneracy of the direction of rotation.

The recent review by Kole and Khandeka [30] provides a detailed
overview of engineering applications of ferrofluids, reaching from de-
sign applications in machine elements over Bio-medical applications to
the use in thermal engineering. Aside the general interest in engineer-
ing the understanding of fundamental physical and chemical aspects
ferrofluids offer great opportunities for medical applications and future
developments. One target is the exact and close positioning of a drug
near an organ needing treatment and therefore to reduce unwanted
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side effects. Here the surfactant molecules of a ferrofluid offer the
opportunity to attach such drugs, which then, after injection of the
drug-carrying fluid into a blood vessel can concentrated at a desired
position by applying a strong magnetic field gradient [31]. By doing
so, the drug can be localized in the body at position where treatment
is required and thus minimizing any undesired effects on health tissue
around. Further opportunities lies in the therapy technique for cancer
treatment by hyperthermia. Enriching fluid particles that are marked
with tracer substances in the tumor tissue, an alternating magnetic field
can be applied while the energy losses due to magnetization change in
the particles can be used to heat up the tissue [32]. This allows avoiding
side effects to other organs while destroying the tumor.

Over the years, molecularly targeted therapies have significant ad-
vanced, but the delivery across the blood–brain barrier and the tar-
geting of brain tumors remains a difficult challenge. The recent work
by Wu et al. [33] present a big step forward in this challenging task.
They fabricated a new aqueous, surfactant-free ferrofluid with super-
paramagnetic iron oxide nanoparticles which is coated with silicate
mesolayers and carbon shells and illustrated that such a ferrofluid has
special physiochemical and biological properties, e.g. colloidal stability
and can significant improve cancer targeting procedures.

More recently alternatives to the common and well established
magnetite (APG series [34]) and Cobalt based ferrofluids has been man-
ufactured and studied. One of such examples is the hybrid nanofluid
composed of kerosene and ZnO-Al2O3 nanoparticles studied by Zhang
et al. [35]. Investigating flow and heat transfer of this hybrid nanofluid
variations in velocity and temperature profiles are found by increasing
the magnetic field parameter.

To date, investigations of ferrofluid under alternating magnetic
fields are relatively rare and aside the former mentioned viscosity
studies [29] they are given mostly special attention to heat behavior
[36,37]. Most prominent observation for ferrofluidic flows under al-
ternating fields is the fact that sufficiently high modulation frequency
field will force a faster rotation of the particles [29]. More recently
for outer cylinder at rest it has been shown that a time-periodic
modulated magnetic field also stabilizes the basic state with respect
to axisymmetric Taylor vortex flow (TVF) [38]. Furthermore, such an
alternating magnetic field can provide an accurate control parameter to
balance the system to be either sub- or supercritical. Similar studies for
flow control of ferrofluids due to external applied magnetic fields have
been carried out in various systems. For laminar flow between parallel
plate channels [39] the external applied field is found to uniquely
modify the local velocity distribution and to reduce the effect of both
adverse and favorable pressure gradients and thus allow to control
the flow separation. Also an early, but prospective applications of
ferrofluids is in damping [40]. Most common of such ferrofluid damp-
ing devices are dampers, vibration isolators, and dynamic vibration
absorbers whereby their simplicity, flexibility and reliability gives them
a prominent advantages compared with conventional damping devices.

The aim of this paper is to numerically investigate effects induced
on ferrofluidic Couette flow by an externally applied time-periodic
magnetic field. Counter-rotating cylinders are used to investigate either
toroidal closed (TVF) and helical (SPI) flow structures and to guarantee
bistability between different solutions close to their onsets. We ob-
serve significant enhancement in system stability against the different
primary instabilities. Special focus is given to the non-linear system
response for bistable existing TVF and SPI and their behavior for sub-
and supercritical parameters with respect to the driving frequency.
Depending on the latter the system features characteristics of intermit-
tency. These findings may, among others contribute to applications of
ferrofluids in damping systems, where different alternating frequency
will allow for accurate system response in the sense of controllable and
2

specific desired damping characteristics. (
Table 1
Parameters and their ranges investigated in this paper.

Parameter Symbol Range

Inner Reynolds number 𝑅𝑒𝑖 [110; 190]
Outer Reynolds number 𝑅𝑒𝑜 −125
Axial wavenumber 𝑘 3.927
Static contribution 𝑠𝑧,𝑆 [0; 1.0]
Modulation amplitude 𝑠𝑧,𝑀 [0; 1.0]
Modulation frequency 𝛺𝐻 [10−3; 104]

2. Methods

2.1. System parameters

Flow strength in TCS (Fig. 1(𝑎)) is commonly represented in terms of
he inner [outer] Reynolds number 𝑅𝑒𝑖[𝑜] = 𝜔𝑖[𝑜]𝑟𝑖[𝑜]𝑑∕𝜈, characterizing

the ratio between inertia and viscous forces. These have been proven
to be very well suited parameters to describe the driving of the system
[41]. Here 𝑟𝑖[𝑜] is the non-dimensionalized inner [outer] radius and 𝜔𝑖[𝑜]
the angular velocity of the inner [outer] cylinder. Periodic boundary
conditions are imposed in axial (𝑧) direction and no-slip boundary
conditions on the cylinder surfaces. The cylindrical coordinate system
(𝑟, 𝜃, 𝑧) by the velocity field 𝐮 = (𝑢, 𝑣,𝑤) and the corresponding vorticity
field ∇ × 𝐮 = (𝜉, 𝜂, 𝜁 ) can be used to characterize the system. In
this work the radius ratio of the cylinders is kept fixed at 0.5 and
further a counter-rotating system setup is considered with fixed outer
Reynolds number 𝑅𝑒𝑜 = −125. The time, and length scales are made
dimensionless by diffusion time 𝑑2∕𝜈 and gap width 𝑑 and the pressure
in the fluid is normalized by 𝜌𝜈2∕𝑑2.

To realize a periodically modulated TCS, we apply a sinusoidal
modulation signal to the external magnetic field, which is orientated
parallel to the system symmetry (𝑧) axis, uniform in space and har-
monic in time 𝐇𝑧 = [𝐻𝑆 + 𝐻𝑀 sin (𝛺𝐻 𝑡)]𝐞𝑧. Important to mention
that in case of a static magnetic field (𝐻𝑚 = 0) such a pure axial
oriented magnetic field does not change the system symmetry. Only
stability thresholds are shifted as previously reported [21–23]. The
magnetic field 𝐇 and the magnetization 𝐌 are conveniently normalized
by the quantity

√

𝜌∕𝜇0𝜈∕𝑑, with free space permeability 𝜇0. By using
a modified Niklas approach [17,22,38] the effect of the magnetic field
and the magnetic properties of the ferrofluid on the velocity field can
be characterized by a single (time dependent) parameter

𝑠𝑧(𝑡) = 𝑠𝑧,𝑆 + 𝑠𝑧,𝑀 sin (𝛺𝐻 𝑡), (1)

ith 𝑠𝑧,𝑆 being the static contribution of the driving, 𝑠𝑧,𝑀 the modulation
mplitude, and 𝛺𝐻 the modulation frequency. See Methods Section 2 for
ore details.

.2. Explored parameter space

The current paper explores the parameter space within 0 ⩽ 𝑠𝑠,𝑆 ,
𝑠,𝑀 ⩽ 1. The trajectories I and II shown in the schematics illustrating
he parameter space of Fig. 1(𝑏) represent pure static and pure alternat-
ng magnetic fields, respectively. Point A presents the parameters for
oth bi-stable and coexisting supercritical flows, wavy Taylor Vortex
low (wTVF) and spiral vortex flow (spiral, SPI) at 𝑅𝑒𝑖 = 141, respec-
ively (cf. Fig. 3). The trajectories III and IV highlight the parameters at
hich we provide a more detailed study around the onsets of instability
t point A for 𝑅𝑒𝑖 = 141 (cf. Fig. 2) (see Table 1).

.3. Ferrohydrodynamical equation of motion

The non-dimensionalized hydrodynamical equations [23,25,43] are
erived from:

2
𝜕𝑡 + 𝐮 ⋅ ∇)𝐮 − ∇ 𝐮 + ∇𝑝 =
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Fig. 1. System and explored parameter space. (𝑎) Schematic of the Taylor–Couette
system (TCS) with an external applied homogeneous magnetic field 𝐇𝑧(𝑡) = [𝐻𝑆 +
𝐻𝑀 sin (𝛺𝐻 𝑡)]𝐞𝑧. (𝑏) The arrows I and II indicate the investigated parameter space for
0 ⩽ 𝑠𝑠,𝑆 , 𝑠𝑠,𝑀 ⩽ 1. Point A gives the parameters for supercritical flows at 𝑅𝑒𝑖 = 141 while
III and IV correspond to the set of parameters around the stability threshold and the
onset of instability.

(𝐌 ⋅ ∇)𝐇 +1
2
∇ × (𝐌 ×𝐇),

∇ ⋅ 𝐮 = 0 . (2)

The velocity fields on the cylindrical surfaces are 𝐮(𝑟𝑖, 𝜃, 𝑧) = (0, 𝑅𝑒, 0)
and 𝐮(𝑟𝑜, 𝜃, 𝑧) = (0, 0, 0), with the inner [outer] Reynolds numbers
𝑅𝑒𝑖[𝑜] = 𝜔𝑖[𝑜]𝑟𝑖[𝑜]𝑑∕𝜈, where 𝑟𝑖,[𝑜] = 𝑅𝑖[𝑜]∕(𝑅𝑜 − 𝑅𝑖) is the
non-dimensionalized inner [outer] cylinder radius.

Eq. (2) is solved with an equation describing the magnetization of
the ferrofluid. Here we consider an equilibrium magnetization of an
unperturbed state with homogeneously magnetized ferrofluid at rest.
Thereby the mean magnetic moment is orientated (aligned) in the
direction of the magnetic field: 𝐌eq = 𝜒𝐇. Langevin’s formula [44] is
used to approximate the ferrofluid’s magnetic susceptibility 𝜒 . Further
initial value 𝜒 is set to be 0.9 with use of a linear magnetization law.
Here we consider the ferrofluid APG933 [34,45]. The near equilibrium
approximation by Niklas [17,46] assumes small derivations ‖𝐌−𝐌eq

‖

and small magnetic relaxation time 𝜏: |∇ × 𝐮|𝜏 ≪ 1. Using these approx-
imations, one can obtain [25] the following magnetization equation:

𝐌 −𝐌eq = 𝑐2𝑁
( 1
2
∇ × 𝐮 ×𝐇 + 𝜆2S𝐇

)

, (3)

where

𝑐2𝑁 = 𝜏∕
(

1∕𝜒 + 𝜏𝜇0𝐻
2∕6𝜇𝛷

)

(4)

is the Niklas coefficient [17], 𝜇 is the dynamic viscosity, 𝛷 is the vol-
ume fraction of the magnetic material, S is the symmetric component of
the velocity gradient tensor [25,43], and 𝜆2 is the material-dependent
transport coefficient [43], which we choose to be 𝜆2 = 4∕5 [26,43,47,
48]. Using Eq. (3), the magnetization in Eq. (2) can be eliminated to
obtain the following ferro-hydrodynamical equations of motion [23,25,
38,43]:

(𝜕𝑡 + 𝐮 ⋅ ∇)𝐮 − ∇2𝐮 + ∇𝑝𝑀 (5)

= −
𝑠2𝑧
2

[

𝐇∇ ⋅
(

𝐅 + 4
5
S𝐇

)

+𝐇 × ∇ ×
(

𝐅 + 4
5
S𝐇

)]

,

where 𝐅 = (∇ × 𝐮∕2) × 𝐇, 𝑝𝑀 is the dynamic pressure incorporating
all magnetic terms that can be expressed as gradients, and 𝑠𝑧 is the
Niklas function (classical a static parameter) [Eq. (7)]. To the leading
order, the internal magnetic field in the ferrofluid can be approximated
as the externally imposed field [23], which is reasonable for obtaining
dynamical solutions of the magnetically driven fluid motion. Further
simplification of Eq. (5) leads to

(𝜕𝑡 + 𝐮 ⋅ ∇)𝐮 − ∇2𝐮 + ∇𝑝𝑀 = 𝑠2𝑧
{

∇2𝐮 − 4
5
[∇ ⋅ (S𝐇)] (6)

−𝐇 ×
[ 1∇ × (∇ × 𝐮 ×𝐇) −𝐇 × (∇2𝐮) +4∇ × (S𝐇)

]}

.

3

2 5
Fig. 2. Stability in magnetic fields. Phase diagram for TVF, SPI, wTVF, wSPI and
RIB in (𝑎) a static magnetic field as a function of 𝑠𝑧,𝑆 and (𝑏) a modulated magnetic
field as a function of 𝑠𝑧,𝑀 (cf. trajectory II in Fig. 1(𝑏)), respectively. The bifurcation
thresholds for TVF and SPI/RIB, out of CCF are denoted by the blue line with circles
and the orange line with triangles, respectively. Filled (open) symbols indicate that the
respective solution is stable (unstable) at threshold. Both TVF and SPI are stable in
region E. The black solid lines describe the upper bifurcation thresholds of wTVF (■)
and wSPI (⧫) out of TVF and SPI, respectively. The wavy structures are stable in the
respective gray colored regions G and F (𝑎, 𝑏) and become unstable at the black dashed
curve with open symbols (□,◊). Different solutions and their corresponding stability
in the various regions are listed in Table 3. Note that regions are indicated with the
same labels as already introduced in [42] (c.f. Fig. 3). With respect to static magnetic
fields (𝑎), the stability thresholds for TVF and SPI/RIB can be approximated by the
function 𝑅𝑒sol.

𝑖,𝑐 (𝑠𝑧,𝑆 ) = 𝑅𝑒sol,0
𝑖,𝑐 + 𝑎sol.

1 𝑠2𝑧,𝑆 (sol.={TVF,SPI/RIB}, 𝑎TVF
1 = 41.0, 𝑎SPI/RIB

1 = 46.9)
where 𝑅𝑒sol.,0

𝑖,𝑐 is the stability threshold in absence of any magnetic field. A similar
approximation can be found for the SPI/RIB stability threshold under modulated
magnetic fields (𝑏) via 𝑅𝑒SPI/RIB

𝑖,𝑐 ([𝑠𝑧(𝑡)]) = 𝑅𝑒SPI/RIB,0
𝑖,𝑐 +𝑎SPI/RIB

2 𝑠2𝑧,𝑀 (SPI/RIB 𝑎SPI/RIB
2 = 21.8).

Note, the For TVF the dependence under modulated fields is more complex and cannot
be approximated by a simple quadratic formula. (𝑐) Surface illustrating the critical
Reynolds number 𝑅𝑒𝑖,𝑐 over (𝑠𝑧,𝑆 , 𝑠𝑧,𝑀 )-plane for TVF (blue) and SPI/RIB (red/green).
Note, SPI and RIB exist degenerated. The thick violet point in (𝑎) denotes the ‘bi-critical
point 𝛾.

This way, the effect of the magnetic field (here homogeneous but

alternating with 𝐇𝑧 = [𝐻𝑆 + 𝐻𝑀 sin (𝛺𝐻 𝑡)]𝐞𝑧 and the magnetic prop-

erties of the ferrofluid on the velocity field can be characterized by a

single function, the magnetic field or the (here time dependent) Niklas
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Fig. 3. Supercritical bi-stable existing flow states SPI (1) and wTVF (2) for 𝑅𝑒𝑖 = 141
(cf. point A in Fig. 1(𝑏) and point 𝛼 in Fig. 2(𝑎)). Visualization of (1) SPI and (2)
wTVF. Shown are (𝑎) mode amplitudes |𝑢𝑚,𝑛| of the Fourier spectrum (𝑚, 𝑛), (𝑏) the
radial velocity 𝑢(𝜃, 𝑧) on an unrolled cylindrical surface in the annulus at mid-gap [red
(yellow) color indicates in (out) flow], (𝑐) isosurfaces of 𝜂 [red (dark gray) and yellow
(light gray) colors correspond to positive and negative values, respectively, with zero
specified as white] and (𝑑) vector plot [𝑢(𝑟, 𝑧), 𝑤(𝑟, 𝑧)] of the radial and axial velocity
components (including the azimuthal velocity 𝑣. The thick contour lines correspond to
𝑣∕𝑅𝑒𝑖 = 0.5.

function [17]:

𝑠𝑧(𝑡) =
√

𝑐𝑁𝐻𝑧 =
√

𝑐𝑁
[

𝐻𝑆 +𝐻𝑀 sin (𝛺𝐻 𝑡)
]

(7)
= 𝑠𝑧,𝑆 + 𝑠𝑧,𝑀 sin (𝛺𝐻 𝑡),

with the two time-independent ‘‘Niklas’’ control parameters

𝑠𝑧,𝑆 =
√

𝑐𝑁𝐻𝑆 and 𝑠𝑧,𝑀 =
√

𝑐𝑁𝐻𝑀 (8)

standing for the static contribution (𝑠𝑧,𝑆 ) and the modulation amplitude
(𝑠𝑧,𝑀 ) of the driving, respectively.

2.4. Numerics

The ferrohydrodynamical equations of motion Eq. (5) are solved
[17,22,23,25,49] by a standard, second-order finite-difference scheme
in (𝑟, 𝑧) combined with a Fourier spectral decomposition in 𝜃 and
(explicit) time splitting. In the present work we consider periodic
boundary conditions in axial direction corresponding to a fixed axial
wavenumber 𝑘 = 3.927. On the cylinder surfaces, no-slip boundary
conditions are used and the radius ratio of inner and outer cylinders is
kept fixed at 𝑟𝑖∕𝑟𝑜 = 0.5. The variables in the finite-difference scheme
in (𝑟, 𝑧) can be expressed as

𝑓 (𝑟, 𝜃, 𝑧, 𝑡) =
𝑚max
∑

𝑚=−𝑚max

𝑓𝑚(𝑟, 𝑧, 𝑡) 𝑒𝑖𝑚𝜃 , (9)

where 𝑓 denotes one of the variables {𝑢, 𝑣,𝑤, 𝑝}. For the parameter
regimes considered, the choice 𝑚max = 16 provides adequate accuracy.
Explicit time splitting is used. The explored parameter range spans
110 ⩽ 𝑅𝑒𝑖 ⩽ 190, 0 ⩽ 𝑠𝑧,𝑆 , 𝑠𝑧,𝑀 ⩽ 1, and 10−3 ⩽ 𝛺𝐻 ⩽ 104. For
these parameters, the choice of 16 azimuthal modes provides adequate
accuracy. Uniform grid with spacing 𝛿𝑟 = 𝛿𝑧 = 0.02 and time steps 𝛿𝑡 <
1∕3800 are used. For diagnostic purposes, we also evaluate the complex
mode amplitudes 𝑓𝑚,𝑛(𝑟, 𝑡) obtained from a Fourier decomposition in the
axial direction:

𝑓𝑚(𝑟, 𝑧, 𝑡) =
∑

𝑛
𝑓𝑚,𝑛(𝑟, 𝑡)𝑒𝑖𝑛𝑘𝑧, (10)

where 𝑘 = 2𝜋𝑑∕𝜆 is the axial wavenumber. The Appendix pro-
vides a brief comparison with experimental results and relates the
non-dimensional Niklas function with physical values for the applied
magnetic field 𝐻 .

2.5. Brief remarks on symmetries

In absence of any periodic forcing the symmetry group of the
Taylor–Couette problem is 𝑂(2)×𝑆𝑂(2) [2]. The basic state is invariant
4

Table 2
Flow state nomenclature and abbreviations. From left to right; acronym, flow state,
dominant azimuthal (mode) contribution and flow dynamics, and topological classifi-
cation as fixed point (𝑓 ) or limit cycle (𝑙). Note, SPI exist degenerated as left- (𝑚 = +1)
and rightwinding (𝑚 = −1) solutions.

Acronym Flow state Dominant modes 𝑚 Dynamics Solution

TVF Taylor-Vortex flow 0 – 𝑓
wTVF Wavy Taylor-Vortex flow 0 ± 1 Rotating 𝑙
SPI Spiral vortex flow +1 Rotating 𝑙
wSPI Wavy spiral vortex flow +1,±2 Rotating 𝑙
RIB Ribbon ±1 Rotating 𝑙

to a number of symmetries whose actions on a general velocity field
are

𝑅𝛷(𝑢, 𝑣,𝑤)(𝑟, 𝜃, 𝑧) = (𝑢, 𝑣,𝑤)(𝑟, 𝜃 +𝛷, 𝑧)

𝐾𝑧(𝑢, 𝑣,𝑤)(𝑟, 𝜃, 𝑧) = (𝑢, 𝑣,−𝑤)(𝑟, 𝜃,−𝑧) (11)
𝑇𝛽 (𝑢, 𝑣,𝑤)(𝑟, 𝜃, 𝑧) = (𝑢, 𝑣,𝑤)(𝑟, 𝜃, 𝑧 + 𝛽)

The 𝑆𝑂(2) represents the rotational symmetry in the azimuthal direc-
tion. The presence of purely axial imposed magnetic field does not
change the symmetry group and 𝑂(2) × 𝑆𝑂(2) remains the symmetry
group for the periodically forced system. While 𝑆𝑂(2) remains un-
affected due to the modulation, the axial reflection is no longer a
symmetry of the problem. Instead, composing with a half-period time
translation one obtains a glide-time symmetry 𝐺 of the system. This
symmetry, together with axial translations, still gives the symmetry
group 𝑂(2). Explicit acting on the velocity fields, one obtains following
expression of this symmetry (half-period-flip-symmetry),

𝐺(𝑢, 𝑣,𝑤)[𝑟, 𝜃, 𝑧, 𝑡] = (𝑢, 𝑣,−𝑤)[𝑟, 𝜃,−𝑧, 𝑡 + 𝑇𝐻∕2]. (12)

With this 𝑅 changes from a purely spatial symmetry to a space–time
symmetry. A consequence of the space–time 𝑍2 symmetry generated by
𝐺 implies a more complex bifurcation scenario, e.g. inhibiting period
doubling via a simple negative eigenvalue 𝜇 = −1 [4,50]. Note that 𝑇𝐻
is the period time of the applied magnetic field.

2.6. Nomenclature

The present study focus on flow dynamics in TCS with axial
wavenumber 𝑘 = 3.917, equivalent to a small aspect-ratio 𝛤 = 1.6 =
2𝜋∕𝑘, and counter-rotating cylinders for f fixed outer Reynolds number
𝑅𝑒𝑜 = −125, while the inner Reynolds number varies 110 ⩽ 𝑅𝑒𝑖 ⩽ 170
(i.e. rotation ratio equal −1.14 ≲ 𝑅𝑒𝑜∕𝑅𝑒𝑖 ≲ −0.74, respectively. As a
result common appearing structures in absence of any magnetic field
are well known flow states, (w)TVF, (w)SPI and RIB [1,2,41,42,51–
53]. Table 2 provides an overview of all different flow states discussed
in this work. Acronyms, flow states, including dominant modes, flow
dynamics, and topological classification are indicated. As only pure
axial magnetic fields are considered the standard system symmetries
are preserved [21,22].

3. Results

3.1. Stability behavior

First we will investigate how a modulated magnetic field effects
the primary instabilities, i.e. the stability thresholds of SPI/RIB and
TVF, respectively. Note, that SPI and ribbon (RIB) appear at a common
bifurcation threshold, with RIB being a non-linear superposition of two
SPI with opposite helical orientation. Strictly speaking the solution has
to be identified as 1-SPI [1-RIB] with azimuthal wavenumber 𝑀 = 1
[𝑚 = ±1]. But as for given parameters only 1-SPI [1-RIB] appear, it is
sufficient to use the generic term SPI [RIB] in the following.
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Table 3
Various regions, labeled A-G, as presented in the (𝑅𝑒𝑖,𝑐 , 𝑠𝑧,𝑆 ) and (𝑅𝑒𝑖,𝑐 , 𝑠𝑧,𝑀 ) parameter
space diagrams (Fig. 2(𝑎, 𝑏)) including their stability properties (stable (s), unstable (u),
non-existent (−)).

Region A A1 A2 B C C1 D E F G

TVF – – – s u u s s u s
SPI s u s – s s u s s u
wTVF – – – – – – – – s –
wSPI – – – – – – – – – s
RIB u s u – u s u u u s

3.1.1. Static magnetic fields: 𝑠𝑧,𝑀 = 0
Concerning static magnetic fields various studies [17,20–23] have

shown that any applied magnetic field regardless its orientation stabi-
lizes the CCF basic state, i.e shifting the bifurcation thresholds to larger
control parameter (e.g. 𝑅𝑒𝑖). Without magnetic fields, i.e. 𝑠𝑧 = 0, the
critical values are 𝑅𝑒SPI,0

𝑖,𝑐 = 115.4 and 𝑅𝑒TVF,0
𝑖,𝑐 = 118.5, respectively.

Note, that other axial wavenumber (here 𝑘 = 3.927) will lead to
other critical Reynolds numbers 𝑅𝑒0𝑐 . The stabilization with static field
strength 𝑠𝑧,𝑆 can be approximated with a power law according to
𝑅𝑒sol.

𝑖,𝑐 (𝑠𝑧,𝑆 ) = 𝑅𝑒sol.,0
𝑖,𝑐 + 𝑎sol.

1 𝑠2𝑧,𝑆 (with sol. standing for the solutions
TVF, SPI/RIB, respectively; constants 𝑎TVF

1 = 41.0, 𝑎SPI/RIB
1 = 46.9,

respectively) (see Fig. 2(𝑎)). Both, TVF and SPI/RIB are different strong
affected by increasing 𝑠𝑧,𝑆 , which also result in an exchange in the
primary stable bifurcating solution. Thus, the bifurcation threshold
cross in the point of higher co-dimension, 𝛾, and exchange stability at
𝑠𝑧,𝑆 ≈ 0.812 in Fig. 2(𝑎). (See also [42] for further details.)

The various regions, labeled A-G, as indicated in Fig. 2(𝑎, 𝑏) identify
the existence and stability [stable (s), unstable (u), non-existent (-)]
of the different solutions for here investigated parameter space. As
this is not the main topic of the current paper we refer to former
works [42,49] for further details regarding the stability and transition
between the different solutions. We keep the same notation/labels as
already introduced in the work [42] (c.f. Fig. 3).

3.1.2. Modulated magnetic fields: 𝑠𝑧,𝑀 ≠ 0
A detailed study regarding stability behavior and bifurcation behav-

ior of TVF, SPI and RIB under the influence of modulated magnetic field
can be found in [49]. Here we will only summarize the most important
features. Increasing the modulation amplitude 𝑠𝑧,𝑀 (Fig. 2(𝑏)) stabilizes
the CCF basic state while the magnitude depends on the corresponding
flow structure SPI/RIB or TVF. Thereby no crossing in the bifurcation
thresholds and thus no stability exchange appears for here studied pa-
rameters. However, for sufficiently strong modulation amplitude 𝑠𝑧,𝑀 ≈
0.82 stability is exchanged between SPI and RIB. For 𝑠𝑧,𝑀 ≲ [≳]0.82 SPI
[RIB] appears stable out of the common bifurcation threshold while RIB
[SPI] is unstable close to onset [2,42,54]. For SPI/RIB, the stabilization
of the CCF basic state can be quantified with an approximate power law
according to 𝑅𝑒SPI/RIB

𝑖,𝑐 ([𝑠𝑧(𝑡)]) = 𝑅𝑒SPI/RIB,0
𝑖,𝑐 +𝑎SPI/RIB

2 𝑠2𝑧,𝑀 , with 𝑎SPI/RIB
2 =

21.8 (Fig. 2(𝑐)). This is very similar to the stabilization for static fields.
For TVF the dependence under modulated fields is more complex and
cannot be approximated by such a simple quadratic formula.

Finally, Fig. 2(𝑐) presents the bifurcation thresholds 𝑅𝑒sol.
𝑖,𝑐 , sol.

∈ (SPI,RIB,TVF) (over (𝑠𝑧,𝑆 , 𝑠𝑧,𝑀 )-plane) for TVF (blue) and SPI/RIB
(red/green), respectively. Note that this visualization only shows the
thresholds and not necessary the stability of the solution. In principle
the lower (higher) surface (i.e. smaller 𝑅𝑒𝑖,𝑐) indicates a stable (unsta-
ble) bifurcating solution. The thresholds for SPI and RIB are identical
[2,42,54] while RIB are mainly unstable at onset; the green highlighted
region illustrate RIB to bifurcate stable, while SPI appear unstable and
vice versa for the red surface. Common feature of all surfaces is that
they are convex in any direction.

For parameters in Fig. 2 the maximum stability enhancement in
𝑅𝑒SPI/RIB/TVF

𝑖 is about 62.6% for SPI/RIB and 66.8% for TVF, comparing
the system in absence of any magnetic field with alternating magnetic
field at (𝑠 = 1 = 𝑠 ).
5

𝑧,𝑆 𝑧,𝑀
To summarize, in terms of stability the system reacts to an alternat-
ing modulation of the magnetic field similar as increasing the magnetic
field strength in the static case. This holds for all solutions SPI, RIB and
TVF, while the effect, i.e. the magnitude of stabilization is stronger
for the helical states SPI/RIB. As a result the primary bifurcation
thresholds cross and exchange stability (Fig. 2(𝑐)). The stabilization
increase with increasing modulation amplitude can be understood by
the static field behavior in particular its non-linear grows with power
of 2 (Fig. 2(𝑎)). Therefore, during one modulation period the system
experience a stronger stabilization effect while the modulation ampli-
tude is above (positive) the average field strength in comparison to the
destabilization in the other half period when it is below (negative) the
average field strength. As a result the stabilization within an modulated
magnetic field corresponds to a static field strength, which lies above
the mean value of the alternating field [49]. In analogy, with increasing
modulation amplitude (Fig. 2(𝑏)) also the stabilization effect grows.

Worth mentioning that for those parameters 𝑠𝑧,𝑀 at which RIB
appear stable also the whole wTVF branch connecting RIB and TVF
becomes stabilized. This was already speculated for the classical system
[42] but as wTVF become unstable with approach to RIB a ‘jump’
bifurcation [51] towards SPI appears, and confirmed in the recent work
for modulated magnetic fields [49].

3.2. Dynamic system response

In order to investigate the dynamic system response we need
well-defined initial states. Consider supercritical SPI and wTVF at
𝑅𝑒𝑖 = 141 and fixed static field contribution 𝑠𝑧,𝑆 = 0.6 (𝑠𝑧,𝑀 = 0),
equal to 𝜇 = 𝑅𝑒𝑖(𝑠𝑧(𝑡))∕𝑅𝑒

SPI,0
𝑖,𝑐 (𝑠𝑧,𝑆 = 0.6) − 1 = 0.071 and 𝜇 =

𝑅𝑒𝑖(𝑠𝑧(𝑡))∕𝑅𝑒
TVF,0
𝑖,𝑐 (𝑠𝑧,𝑆 = 0.6) − 1 = 0.057 (far away from the onsets

f the respective instability 𝑅𝑒SPI
𝑖,𝑐 (𝑠𝑧,𝑆 = 0.6) = 131.7 and 𝑅𝑒TVF

𝑖,𝑐 (𝑠𝑧,𝑆 =
.6) = 133.4, cf. point 𝛼 in Fig. 2(𝑎)). Both, SPI and wTVF, are bi-stable
oexisting at given parameters and visualizations are shown in Fig. 3.
hese two solutions will serve as initial states to study the consequences
f a modulated field. To analyze the dynamics, we will utilize the mode
mplitude |𝑢1,1| as this is present in both solutions, wTVF and SPI.
orth to mention that for wTVF both mode amplitudes |𝑢1,1| and |𝑢1,−1|

re identical (see Fig. 3(2𝑎)).

.2.1. Small modulation amplitude (𝑠𝑧,𝑀 = 0.1) - fully supercritical
For small modulation amplitude (𝑠𝑧,𝑀 = 0.1, 𝑠𝑧,𝑆 = 0.6) the system

emains always supercritical for SPI although for (w)TVF it crosses
he stability threshold for TVF within one period (cf. dashed arrows
ig. 2(𝑎)).

.2.1.1. 1-SPI. Fig. 4 shows the oscillation of the control function 𝑠𝑧(𝑡)
ogether with the system response, illustrated by the mode amplitudes
𝑢1,1| as a function of the reduced time 𝑡∕𝑇𝐻 (𝑇𝐻 = 2𝜋∕𝛺𝐻 being the
ssociated modulation period). The temporal oscillations are shown for
ifferent frequencies 𝛺𝐻 as indicated. As the mode amplitude |𝑢1,1|
cf. Fig. 3(𝑎)) is present either in SPI (dashed curves) and wTVF (solid
urves) it is used to characterize the dynamic behavior in Fig. 4.

Because for SPI the system always remains supercritical, the system
esponse is very similar to the earlier studied case for supercriti-
al TVF [49]. In the high-frequency limit, the stability behavior is
olely affected by the time average of 𝑠𝑧(𝑡). Here the stability bound-
ry coincides with a static stability boundary using an equivalent
tatic magnetic Niklas parameter, which is larger than the mean value
𝑠𝑧(𝑡)⟩𝑇𝐻 = 0.6. For SPI the equivalent static driving is 𝑠𝑧,𝑆 = 0.607,
hich, for the sake of reference this is also included (red dashed lines

n Fig. 4).
The larger parameter for equivalent static driving and the fact that

he influence of alternating field decreases with increasing driving
requency leads back to the relaxation time (Néel and/or Brownian
55]) of the ferrofluid particles. In the high frequency case, the ferro
olloid does not have enough time for remagnetization. This reduction
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Fig. 4. Non-linear system response for supercritical solutions SPI and wTVF. (𝑎)
emporal oscillations of the control function 𝑠𝑧(𝑡) = 𝑠𝑧,𝑆+𝑠𝑧,𝑀 sin (𝛺𝐻 𝑡) (𝑠𝑧,𝑆 = 0.6, 𝑠𝑧,𝑀 =
.1, cf. trajectory III in Fig. 1(𝑏)). The dominant mode amplitudes |𝑢1,1| for (𝑏) SPI
nd (𝑐) (initial) wTVF as function of the reduced time 𝑡∕𝑇𝐻 (𝑇𝐻 = 2𝜋∕𝛺𝐻 being

the modulation period associated with the corresponding frequency). The red squares
(■) (𝑏, 𝑐) and blue circles (∙) (𝑐) show the stationary response to stationary magnetic
field with field strength given by the actual value of 𝑠𝑧(𝑡). Thick, horizontal dashed
lines in (𝑎, 𝑏, 𝑐) show the order parameter for stationary driving with the mean Niklas
parameter: for SPI ⟨𝑠𝑧(𝑡)⟩ = 0.607, and for wTVF ⟨𝑠𝑧(𝑡)⟩ = 0.611. (𝑑) Time evolution of
the dominant mode amplitude |𝑢1,1| as for different 𝛺𝐻 as indicated. Either of these
modulation starts at 𝑡 = 0, before only the static field 𝑠𝑧,𝑆 = 0.4 (𝑠𝑧,𝑀 = 0.0) is present.
or clarity/visibility mode amplitudes |𝑢0,1| are only shown for short times 𝑡 in case of
igh frequencies 𝛺𝐻 . Note, solid (dashed) lines correspond to solutions of wTVF and
PI, respectively. In (𝑐, 𝑑) dashed lines also indicate the transition from wTVF towards
PI. Control parameter 𝑅𝑒𝑖 = 141.

f magnetization is accompanied by reduction of rotational viscosity
hich means that the stabilization is slightly different to the static case

for SPI: ⟨𝑠𝑧(𝑡)⟩𝑇𝐻 = 0.6 while 𝑠𝑧,𝑆 = 0.607).
For high frequency modulation 𝛺𝐻 ≳ 100, the flow dynamics is

early averaged. Differences between mode amplitude |𝑢1,1| and the
ean value are very small. For 𝛺𝐻 = 100 the modulation amplitude
|𝑢1,1| is barely 3% of its time mean (Fig. 4(𝑏)). Further a small phase
hift between the minimum and maximum of the mode amplitudes |𝑢1,1|
ersus the maximum and minimum of field parameter 𝑠𝑧(𝑡) can be ob-
erved: the amplitudes are temporally delayed against the field because
f the inertia of the fluid resisting the fast changing accelerating Kelvin
orce leading to this time lag. The phase shift decreases consistently
ith decreasing driving frequency 𝛺𝐻 (cf. |𝑢1,1| in Fig. 4(𝑏)). Mean-
hile, the corresponding oscillation amplitudes are increasing with

maller 𝛺𝐻 . The lower the modulation frequency 𝛺𝐻 , the closer the
scillation profiles approach the curve of a static magnetic field (red
quares).

.2.1.2. wTVF. For wTVF the scenario is different as within one mod-
lation period 𝑇𝐻 the system crosses the boundary, separating stable
nd unstable wTVF at 𝑠𝑧,𝑆 ≈ 0.65 (see Fig. 2(𝑎)). The system response

with respect to driving frequency 𝛺𝐻 for 𝑠𝑧,𝑀 = 0.1 (𝑠𝑧(𝑡) ∈ [0.5; 0.7])
and initial condition wTVF (4(𝑐, 𝑑)) can be summarized as follows:

• 1.45 ≲ 𝛺𝐻 : the system remains supercritical in wTVF.
• 𝛺𝐻 ≲ 1.45: the system changes from the initial wTVF to SPI and

hereafter remains supercritical in SPI.

As seen for SPI, in the high-frequency limit solely the time average of
𝑠𝑧(𝑡) affects the stability behavior. For 𝛺𝐻 ≳ 500, any variation over one
period is eliminated. For wTVF the equivalent static magnetic Niklas
parameter is 𝑠𝑧,𝑆 = 0.611 (dashed blue lines) and therefore also larger
than the mean value ⟨𝑠𝑧(𝑡)⟩𝑇𝐻 = 0.6. However, for low frequencies
6

𝛺𝐻 ≲ 1.45 the initial wTVF state loses stability and transitions towards
Fig. 5. Non-linear system response across the instability (cf. Fig. 4). (𝑎) Temporal
oscillations of the control function 𝑠𝑧(𝑡) = 𝑠𝑧,𝑆 + 𝑠𝑧,𝑀 sin (𝛺𝐻 𝑡) (𝑠𝑧,𝑆 = 0.6, 𝑠𝑧,𝑀 = 0.2,
f. trajectory IV in Fig. 1(𝑏)). The dotted blue line marks the high frequency limit
scillatory (𝑠𝑧,𝑆 = 0.6, 𝑠𝑧,𝑀 = 0.2) bifurcation threshold for SPI, while both dashed lines
red and blue) mark the stationary (𝑠𝑧,𝑆 = 0.6, 𝑠𝑧,𝑀 = 0.0) bifurcation threshold for SPI
nd TVF, respectively. (𝑏) Time evolution of the dominant mode amplitude |𝑢1,1| as
function of time for different driving frequencies 𝛺𝐻 as indicated. The modulation

𝑧,𝑀 starts at 𝑡 = 0, before only a static field 𝑠𝑧,𝑆 = 0.6 (𝑠𝑧,𝑀 = 0.0) is present for (1)
PI and (2) wTVF, respectively. (𝑐) Corresponding mode amplitudes |𝑢1,1| as function
f the reduced time 𝑡∕𝑇𝐻 (𝑇𝐻 = 2𝜋∕𝛺𝐻 being the modulation period associated with
he corresponding frequency). The red squares (■) and blue circles (∙) in (𝑏) show the
tationary response to stationary magnetic field with magnetic field strength given by
he actual value of 𝑠𝑧(𝑡). The horizontal dashed red (2𝑎) and blue (2𝑏) line indicate
he (time averaged) mode amplitudes for high frequency driving. Control parameter
𝑒𝑖 = 141.

PI while crossing the stability threshold for wTVF and thereafter the
ystem response remains the same within the SPI as discussed before.

Interesting observation is the fact that for relative low frequencies
𝐻 ≲ 40, the mode amplitudes |𝑢1,1| within one period slightly
vershoot the maximum values of their static counterparts. For smaller
requencies 40 ≲ 𝛺𝐻 the mode amplitudes |𝑢1,1| move around the aver-
ge well within their maximum and minimum limits. This overshooting
s caused by the inertia of the fluid itself.

For small modulation amplitude one can conclude, as the system
emains supercritical always one single solution either SPI or wTVF is
elected by the driving frequency 𝛺𝐻 in agreement with earlier findings
38].

.2.2. Large modulation amplitude (𝑠𝑧,𝑀 = 0.2) - supercritical vs. subcriti-
al

Consider system parameters around point 𝛼 (Fig. 2(𝑎)) and modu-
ation amplitude 𝑠𝑧,𝑀 = 0.2 (𝑠𝑧(𝑡) ∈ [0.4; 0.8]), the non-linear system
esponse becomes more complicate. Here the bifurcation thresholds
or both, SPI (𝑠𝑧,𝑆 ≈ 0.745) and TVF (𝑠𝑧,𝑆 ≈ 0.73) are crossed within
ne modulation period (cf. Fig. 2(𝑎)). As a result the system becomes
emporal (slightly) subcritical. To be more precise, for an initial SPI
nly the bifurcation thresholds is crossed within the modulation while
or wTVF additionally also the stability threshold (𝑠𝑧,𝑆 ≈ 0.65) (as for
maller modulation 𝑠𝑧,𝑀 = 0.1, cf. Fig. 4(𝑐, 𝑑)) is crossed.

.2.2.1. SPI. Depending on the driving frequency 𝛺𝐻 , the system
esponse for modulation amplitude 𝑠𝑧,𝑀 = 0.2 (𝑠𝑧,𝑆 = 0.6) with SPI
s initial solution, (Fig. 5(1)) can be summarized as follows:

• 2.5 ≲ 𝛺 : the system remains supercritical in SPI.
𝐻
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• 0.1 ≲ 𝛺𝐻 ≲ 1.45: the system response changes between being
supercritical (SPI) and subcritical (CCF).

• 0.06 ≲ 𝛺𝐻 ≲ 0.1: the system features intermittency as the response
changes between being supercritical and subcritical with random
appearance of either SPI and wTVF (for further discussion see
Section 3.2.3 below).

• 𝛺𝐻 ≲ 0.06: the system response changes between being supercrit-
ical (wTVF) and subcritical (CCF).

Remaining supercritical, the initial system response is analog to the
previous discussed scenario for SPI and smaller modulation amplitude
𝑠𝑧,𝑀 = 0.1 (Fig. 4). As seen before, in the high-frequency limit, it is
only the time average of 𝑠𝑧(𝑡) that affects the stability behavior. For
SPI the equivalent static driving is 𝑠𝑧,𝑆 = 0.612 (red dashed lines in
Fig. 5). Note this is, as to expect larger than the corresponding value
for smaller modulation amplitude 𝑠𝑧,𝑀 = 0.1.

Decreasing the driving frequency 𝛺𝐻 the amplitude in the oscil-
lating in |𝑢1,1| continuously increase before at 𝛺𝐻 ≈ 2.5 it eventually
becomes temporally zero, representing that the system becomes subcrit-
ical (CCF). The smaller the driving frequency 𝛺𝐻 , the longer the system
remains subcritical (Fig. 5(1𝑏)). For low driving frequencies 𝛺𝐻 , within
one period, a fast growth of the mode amplitude |𝑢1,1| is followed by
a relaxing just similarly to values close to the stationary scenario (red
squares), which becomes more and more approached with decreasing
𝛺𝐻 . Similar to the scenario for full supercritical SPI (Fig. 5(𝑏)), one
can also observe a temporal delay of the mode amplitudes |𝑢1,1| with
respect to the extrema (min and max) of 𝑠𝑧(𝑡).

For lower driving frequencies the system features intermittency in
a narrow region for 𝛺𝐻 (see Section 3.2.3 below) before for very low
frequencies the system response changes in favor of wTVF (Fig. 5(1𝑐)),
which basically follows the values for stationary scenario, if being
supercritical. Worth to emphasize that once changed to wTVF the
system response remains the same for parameters 𝛺𝐻 ≲ 0.06. Various
simulations have been carried out with more than 50 cycles changing
between subcritical and supercritical wTVF. Here no SPI has been
detected.

3.2.2.2. wTVF. With variation in the driving frequency 𝛺𝐻 , the system
response for 𝑠𝑧,𝑀 = 0.2 (𝑠𝑧(𝑡) ∈ [0.4; 0.8]) and initial condition wTVF
(5(2)) can be summarized as follows:

• 6.5 ≲ 𝛺𝐻 : the system remains supercritical in wTVF.
• for 1.1 ≲ 𝛺𝐻 ≲ 6.5: the system response changes between being

supercritical (wTVF) and subcritical (CCF).
• for 0.1 ≲ 𝛺𝐻 ≲ 1.1: the system response changes between being

supercritical (SPI) and subcritical (CCF).
• 0.06 ≲ 𝛺𝐻 ≲ 0.1: (as for initial SPI and 𝑠𝑧,𝑀 = 0.2) the system

shows intermittent behavior as the response changes between
being supercritical and subcritical with random appearance of
either SPI and wTVF (for further discussion see Section 3.2.3
below).

• 𝛺𝐻 ≲ 0.06: (as for initial SPI and 𝑠𝑧,𝑀 = 0.2) the system
response changes between being supercritical (wTVF) and sub-
critical (CCF).

As already seen for small modulation amplitude, the stability be-
havior for wTVF in the high-frequency limit is only affected by the
time average of 𝑠𝑧(𝑡) and is equivalent to a static driving with 𝑠𝑧,𝑆 =
0.614 (blue dashed lines in Fig. 5), which is slightly smaller than the
corresponding value one for SPI.

With decreasing driving frequency 𝛺𝐻 the system response changes
between subcritical CCF and supercritical wTVF for 1.1 ≲ 𝛺𝐻 ≲ 6.5. Al-
though the system response continuous to switch between supercritical
and subcritical, for smaller values 0.1 ≲ 𝛺𝐻 ≲ 1.1, the supercritical SPI
appears, despite wTVF being the initial state.

Regardless the initial state, wTVF or SPI, for the narrow region
0.06 ≲ 𝛺 ≲ 0.1 intermittent behavior is found with random exchange
7
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Fig. 6. Intermittent behavior with initial states (1) SPI and (2) wTVF. Time evolution
of (𝑎) characteristic mode amplitudes |𝑢𝑚,𝑛|, (𝑏) azimuthal vorticity 𝜂± = 𝜂(0, 0,±0.5) and
(𝑐) modal kinetic energy 𝐸𝑘𝑖𝑛 for modulating magnetic field with 𝑠𝑧,𝑆 = 0.6, 𝑠𝑧,𝑀 = 0.2
and modulation frequency 𝛺𝐻 = 0.09 (see also Fig. 7). Top and bottom correspond to
two different solutions wTVF (top) and SPI, which appear during the time evolution
as indicated in (1) (green dashed vertical lines).

of wTVF or SPI as the appearing supercritical solution. Further, for very
low 𝛺𝐻 ≲ 0.06 the system response is the same as seen before for SPI as
initial condition. As before the system is alternating between subcritical
CCF and supercritical wTVF.

3.2.3. Intermittency
Independent of the initial condition, SPI or wTVF, for a narrow

region of driving frequency 0.06 ≲ 𝛺𝐻 ≲ 0.1 the system is character-
ized by intermittency. While periodic alternating between subcritical
CCF and supercritical solutions randomly either wTVF or SPI appear.
Thereby both, the number of consecutive appearing same pattern (SPI
or wTVF) and the number between switches from one to the other
appear to be random. However, when ever the system becomes su-
percritical, both helical modes |𝑢1,±1| grow with identical magnitude
together with the azimuthal (dominant) mode |𝑢0,1| (Fig. 6(𝑎)).

Fig. 6 shows an intermittency behavior as it appears for initial states
(1) SPI and (2) wTVF, respectively. The time series of (𝑎) |𝑢𝑚,𝑛| and (𝑏) 𝜂±
illustrates the random appearance of one of both states (SPI or wTVF)
when the system is supercritical. Being supercritical, the modal kinetic
energy 𝐸𝑘𝑖𝑛 =

∑

𝑚 𝐸𝑚 = 1
2
∑

𝑚 ∫ 2𝜋
0 ∫ 𝛤∕2

−𝛤∕2 ∫
𝑟𝑜
𝑟𝑖

𝐮𝑚𝐮∗𝑚𝑟d𝑟d𝑧d𝜃 [where 𝐮𝑚
(𝐮∗𝑚) is the 𝑚th (complex conjugate) Fourier mode of the velocity field]
is basically the same for SPI and wTVF (𝑐). Horizontal red and blue
dashed lines indicate the modal kinetic energy of both initial states,
SPI and wTVF, respectively, at 𝑠𝑧,𝑡 = 0.6. While for supercritical SPI, 𝜂±
are identical, they differ for wTVF. Thereby the difference depend on
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Fig. 7. (𝑎) Phase portrait spanned by 𝜂+ and 𝜂− (see text for further description) and
3D parameter space (𝜂+ , 𝜂− , 𝐸𝑘𝑖𝑛). Curves for wTVF and SPI are obtained for stationary
magnetic field 𝑠𝑧,𝑆 = 0.6 (𝑠𝑧,𝑀 = 0), while magenta points represent the trajectory
corresponding to modulating magnetic field with 𝑠𝑧,𝑆 = 0.6, 𝑠𝑧,𝑀 = 0.2 and modulation
frequency 𝛺𝐻 = 0.09 at which intermittency is observed (see also Fig. 6).

the axial position of the azimuthal closed vortex structure, which can
change due to the present axial periodic boundary condition.

The snapshots at top (wTVF) and bottom (SPI) (in Fig. 6) present
supercritical states appearing within the time series at 𝑠𝑧(𝑡) = 𝑠𝑧,𝑚𝑎𝑥 =
0.4 [(𝑠𝑧,𝑀 = −0.2) for minimum stabilization] as indicated (green
dashed vertical lines). The similarity to the initial states (Fig. 3) is
obvious. However, worth to mention that due to 𝑠𝑧(𝑡) = 0.4 the solutions
are more far away from their respectively onsets (Fig. 2(𝑎)). As a result
the absolute mode amplitudes |𝑢1,1| for SPI and |𝑢1,±1|, |𝑢0,1| for wTVF
are larger. In particular for the latter one can see that the dominant
mode amplitudes are 𝑢0,±1 for 𝑠𝑧(𝑡) = 0.4, while for 𝑠𝑧,𝑆 = 0.6 these are
the mode amplitudes |𝑢1,±1|.

In order to get some insight into the flow dynamics during the
intermittent scenario, Fig. 7 shows the phase portrait spanned by 𝜂+
and 𝜂− (cf. Fig. 6(𝑏)) and the 3D parameter space (𝜂+, 𝜂−, 𝐸𝑘𝑖𝑛). The
curves for wTVF and SPI belong to stationary magnetic field 𝑠𝑧,𝑆 = 0.6
(𝑠𝑧,𝑀 = 0). Both solutions appear reflection symmetry with respect
to the diagonal 𝜂+ = 𝜂−. The distance from the phase portraits to
the diagonal line 𝜂− = 𝜂+ is a measure of the degree to which 𝑍2
symmetry is broken. The cloud of magenta points represent the trajec-
tory corresponding to modulating magnetic field with 𝑠𝑧(𝑡) ∈ [0.4; 0.8]
𝑠𝑧,𝑆 = 0.6, 𝑠𝑧,𝑀 = ±0.2 and modulation frequency 𝛺𝐻 = 0.09 with
intermittency (Fig. 6). While the system changes between subcritical
and supercritical the basic symmetry remains preserved visible by the
arrangement around the diagonal 𝜂+ and 𝜂−. In the 3D parameter space
(𝜂+, 𝜂−, 𝐸𝑘𝑖𝑛) the corresponding trajectory builds up to a ‘mountain’,
which indicates the increasing phase space explored with becoming
more supercritical, i.e. going from top to bottom of the mountain.

4. Discussion

Fig. 8 summarizes the detected non-linear system response for both
initial conditions, SPI and wTVF, respectively, with small and large
modulation amplitudes with respect to variation in the corresponding
driving frequency 𝛺𝐻 . For all in common the high frequency limit
results in a single supercritical solution, which is determined by the
corresponding initial condition, either SPI or wTVF.

For small modulation amplitude and 𝑠𝑧,𝑀 = 0.1 (Fig. 8(1)) the sys-
tem always remains supercritical and the system response is relatively
simple. In case of SPI (1𝑎) as initial condition the system response is
independent of 𝛺𝐻 . Although remaining supercritical, this change for
wTVF as initial condition (1𝑏) as within one modulation period 𝑇𝐻
the stability threshold for wTVF is crossed. As a result, for studied
parameters, for 𝛺𝐻 ≲ 1.45 the system response change to SPI.

For larger modulation amplitude and 𝑠𝑧,𝑀 = 0.2 the system response
becomes significant more complicate as now within one modulation
period 𝑇 the system crosses also the bifurcation thresholds for both,
8
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Fig. 8. Schematic illustration for stability change/switch between different flow states,
subcritical and supercritical dynamical system response, with variation in the driving
frequency 𝛺𝐻 (increasing left to right) for small (1) 𝑠𝑧,𝑀 = 0.1 and large (2) 𝑠𝑧,𝑀 = 0.2
modulation amplitude (cf. Figs. 4 and 5). Initial states are (𝑎) SPI and (𝑏) wTVF,
respectively. Solid lines indicate a single stable solution and dashed lines indicate an
alternation between different solutions.

SPI and TVF, and as a result changes between temporally supercritical
and subcritical behavior. In the high frequency limit SPI (2𝑎) (as initial
condition) remains unaffected. With decreasing 𝛺𝐻 the initial system
response is an alternation between subcritical CCF and supercritical
SPI (due to crossing the bifurcation threshold). Further, reducing 𝛺𝐻
the system shows intermittent behavior (in a narrow parameter range)
with random appearance of both supercritical SPI and wTVF, which
is eventually followed by alternation between CCF and supercritical
wTVF.

Similar to SPI, also wTVF (2𝑏) remains preserved in the high fre-
quency limit. With reducing 𝛺𝐻 the system response with alternation
between sub- and supercritical solutions. Initially between CCF and
wTVF, which then change towards CCF and SPI. This sequence results
from the fact that the corresponding bifurcation threshold for SPI lies
below the one for TVF (Fig. 2(𝑎)). Thus, for smaller frequencies 𝛺𝐻 ,
i.e. larger period times 𝑇𝐻 the helical modes |𝑢1,±1| have enough time
to grow before the azimuthal modes |𝑢0,±1| can do so. Hereafter the
non-linear system response is identical as described before. A narrow
region of intermittency is followed by the final alternation between CCF
and supercritical wTVF at very low driving frequency 𝛺𝐻 .

Most interesting observations are the appearing of intermittent be-
havior for a narrow parameter range in driving frequency 𝛺𝐻 as well
that for low driving frequency 𝛺𝐻 (and large modulation amplitude
and 𝑠𝑧,𝑀 = 0.2) the system always evolves into wTVF as supercritical
solution, independent of the initial state (SPI or wTVF). This is even
more strange for the following reasons: First, as a matter of fact the
stability threshold for SPI is lower than the corresponding one of TVF
(cf. Fig. 2(𝑎)). Second, the SPI branch bifurcates stable, while the TVF
branch bifurcates unstable (as appearing second). As a result one might
expect the stable SPI to be favored. In fact, we detected both modes
|𝑢1,±1| initially to grow. But eventually, before one of both modes |𝑢1,+1|
or |𝑢1,−1| overcomes the other in order to select a left or right-winding
SPI, the modes 𝑢0,±1 grow to generate wTVF (with |𝑢1,+1| = |𝑢1,−1|). Such
a competition is also found in the intermittent regime (cf. Fig. 7(1𝑎, 2𝑎)),
although there sometimes one of the helical modes |𝑢1,±1| leaves as the
‘‘winner’’ generating SPI.

A possible explanation for the intermittent behavior may be the
following. For given parameters, the system crosses first the bifurcation
and at the same time also stability threshold for SPI and second the
bifurcation threshold for TVF (Fig. 2(𝑎)). Thus, the helical modes |𝑢1,±1|
should grow (first), as they do and in fact they grow with identical am-
plitudes. Having (later) crossed the bifurcation threshold for TVF, also
the azimuthal modes |𝑢0,±1| grow. Any appearing small perturbations
introduced by these now raising modes may affect the helical modes
|𝑢1,±1| to become unequal. Once unequal (even with minor differences),
the larger one continuously grows to become the major mode, while the
smaller one dies out together with the modes |𝑢 |. The result is a SPI.
0,±1
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On the other hand if no larger (random) perturbations appear during
the growth, the mode amplitudes 𝑢1,1 and 𝑢1,−1 remain equal while
|𝑢0,±1| grow. In this case wTVF appears. This speculation is supported
by the fact that for small driving frequencies 𝛺𝐻 ≲ 0.06 the system
response is found to be always wTVF when becoming supercritical.
Thus, for such low frequencies, corresponding long period times 𝑇𝐻 the
additional introduced perturbations with changing 𝑠𝑧(𝑡) have enough
time to die out and therefore the helical modes |𝑢1,1| and |𝑢1,−1| can
grow with identical amplitudes. Together with the growing |𝑢0,±1| this
result in the found wTVF.

The present work manifests the importance of complex fluids un-
der external driving. The effect of modulated external fields on the
evolution of disturbances and nonlinear dynamics is of great interest
in connection with the possibility of controlling the hydrodynamic
processes and mass transfer. As such the modulation in frequency
for an alternating field may provide a simple and accurate way to
trigger the system response. As shown in the present work the flow can
be controlled (𝑖) between different supercritical flow solutions or (𝑖𝑖)
between supercritical and subcritical flow solutions, which means to
trigger either sub- or supercritical system response. Aside the different
flow pattern of these flow structures they typically also have crucial
different fluid properties. With respect to industrial and engineering ap-
plication most prominent to mention is their significant distinguishable
torque. This, together with the ability to modify their characteristics
(in a simple and very accurate/controllable way) due to an oscillating
magnetic field makes ferrofluids highly interesting in the area of flow
control and/or damping systems, e.g. in aerospace sector, with very
strict requirement on weight, size and reliability.

Since ferrofluid has the unique property of being controlled by an
external applied oscillating magnetic field, future studies will focus
on the correlation of this frequency with the internal heat transfer
within the ferrofluid. Here, the key focus is the use of ferrofluids in
medical applications, e.g. in cancer treatment by hyperthermia. Having
brought ferrofluid particles in the tumor tissue they can be used to
heat up the tissue via alternating in the frequency and thus destroy
the tumor, avoiding side effects to other organs. Aside, from a more
fundamental point of view is the study of time-dependent flow states,
e.g. wavy Taylor vortices and their response to stimulation with its own
or higher harmonic frequencies. For this scenario interesting resonant
phenomena and/or switching between different modes can be highly
expected.
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Appendix

Comparison with experimental observations

The appendix provides a short discussion and comparison of the
here considered parameters in its dimensionless forms with dimen-
sional experimental values. Aside a comparison with experimental
9

observation is given to validate the code. t
Fig. 9. The Niklas function 𝑠𝑧 versus the magnetic field strength 𝐻 for ferrofluid
PG933 [34]. Point A gives the parameters for supercritical flows at 𝑅𝑒𝑖 = 141 while III
nd IV correspond to the set of parameters explored in detail (see also Fig. 1). In detail
he values are in A: 𝑠𝑧 = 0.6 ⇔ 𝐻 = 41.98; for III: 𝑠𝑧,𝑚𝑖𝑛 = 0.5 ⇔ 𝐻 = 31.07&𝑠𝑧,𝑚𝑎𝑥 =
.7 ⇔ 𝐻 = 54.97. for IV: 𝑠𝑧,𝑚𝑖𝑛 = 0.4 ⇔ 𝐻 = 22.88&𝑠𝑧,𝑚𝑎𝑥 = 0.8 ⇔ 𝐻 = 71.98.

.1. Relation between niklas function 𝑠𝑧(𝐻) and experimental field strength

Doubtless most important is the relation of the Niklas function
𝑧(𝐻) and the corresponding experimental magnetic field strength 𝐻 .
he range of the magnetic parameter 𝑠𝑧 considered in this paper,

.e., 0 ⩽ 𝑠𝑧 ⩽ 1.0, can in fact be realized in experimental studies
f ferrofluids. Fig. 9 shows, for ferrofluid APG933 [34], the relation
etween 𝑠𝑧(𝐻) and 𝐻 . For example, our computationally determined
alue of oscillating fields (at 𝑅𝑒𝑖 = 141) range for (III) from 𝑠𝑧,𝑚𝑖𝑛 =
.5 to 𝑠𝑧,𝑚𝑎𝑥 = 0.7, which corresponds to the magnetic field strength
f about 𝐻 = 31.07 [kA/m] and 𝐻 = 54.97 [kA/m], respectively.
onsequently the range for (IV) is wider from 𝑠𝑧,𝑚𝑖𝑛 = 0.4 to 𝑠𝑧,𝑚𝑎𝑥 =
.8, which corresponds to the magnetic field strength of about 𝐻 =
2.88 [kA/m] and 𝐻 = 71.98 [kA/m], respectively. Worth mentioning,
hat the relation demonstrated in Fig. 9 depends on the ferrofluid type.
or different ferrofluids, for example Cobalt based ferrofluids [21],
he effects due to magnetic fields can be ‘‘stronger’’, meaning that
imilar dynamical behaviors can occur but for weaker magnetic fields.
side the axial wavenumber, here 𝑘 = 3.927 corresponding to an axial
avelength 𝜆 = 1.6 = 2𝜋∕𝑘 may also influence the nonlinear response
f the system. For sure it effects the stability thresholds and it is to
xpect that larger vortex cells, i.e. larger [smaller] 𝜆 [𝑘] will be more
nert to the external driving frequency of the alternating field. The latter
oint is beyond the scope of the present work but in focus on future
nvestigations.

.2. Code validation

For code validation some of the experimental results presented by
eindl & Odenbach [20] have been reproduced. In their work they
tudied ferrofluidic Couette flow with large aspect ratio 𝛤 = 20 under
he influence of an axial magnetic field. In absence of any field they
etected a critical rotation rate (here the primary bifurcating flow,
aylor-vortex flow (TVF) appears) of 𝜔𝑖,𝑐 = 0.498 ± 0.004 Hz with axial
avenumber 𝑘 = 3.14 (i.e. 10 vortex pairs present in the gap) and outer

ylinder at rest, 𝜔𝑜 = 0, which is equivalent to a critical Reynolds num-
er 𝑅𝑒exp

𝑖,𝑐 = 68.4 (ferrofluid parameters as indicated in table 2 [20]).
onsider their studied system parameter our code provides a critical
eynolds number 𝑅𝑒num,RBC

𝑖,𝑐 = 68.6 whereby we detect a wavenumber
= 3.15 in the system (in the center, ignoring the Ekman vortices near

he lids which have slightly different 𝑘) for rigid boundary conditions.
his is a variation fairly less than 0.5%. In addition, assuming periodic
oundary conditions we obtained 𝑅𝑒num,PBC

𝑖,𝑐 = 68.5. Fig. 10 illustrates

he critical Reynolds number, 𝑅𝑒𝑖,𝑐 , at which Taylor vortex flow (TVF)
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Fig. 10. Variation with axial magnetic field strength 𝐻 of the reduced critical Reynolds
umber for 𝑘 = 3.15 (numerics) and 𝑘 = 3.14 (experiment) and outer Reynolds number
𝑒𝑜 = 0 and −23.9, respectively. RBC and 𝛤 = 20; used ferrofluid parameters as

indicated in table 2 [20].

sets in, in a reduced form (𝑅𝑒𝑖,𝑐 (𝐻)∕𝑅𝑒𝑖,𝑐 (𝐻 = 0) − 1) as a function
of applied magnetic field strength for two parameter settings 𝑅𝑒𝑜 = 0
(outer cylinder at rest) and 𝑅𝑒𝑜 = −23.9 (counter-rotating cylinders).
Here the numerical code provides an onset of 𝑅𝑒𝑖,𝑐 = 69.3. As Fig. 10
illustrates, experimental and numerical results are in good agreement.
However, a general observation is that the stabilizing effect is slightly
stronger based on the numerical results compared to experimental val-
ues, i.e. the numerical curves lie above the experimental ones. But they
are well within the error-range given for experimental data provided in
[20].
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